
WOW! eBook
www.wowebook.org

ASP.NET	Core	Essentials

WOW! eBook
www.wowebook.org

Table	of	Contents

ASP.NET	Core	Essentials
Credits
About	the	Author
About	the	Reviewer
www.PacktPub.com

eBooks,	discount	offers,	and	more
Why	subscribe?

Preface
What	this	book	covers
What	you	need	for	this	book
Who	this	book	is	for
Conventions
Reader	feedback
Customer	support

Downloading	the	example	code
Errata
Piracy
Questions

1.	Getting	Started	with	ASP.NET	Core
ASP.NET	Core	-	Unifying	MVC,	Web	API,	and	Web	Pages

High-level	overview
Version	numbers
Putting	it	all	together

Differences	between	.NET	Framework	and	.NET	Core
Full	.NET	Framework	4.6
Lightweight	.NET	Core
Running	ASP.NET	Core	on	.NET	Framework	versus	.NET	Core

What's	new	with	Visual	Studio	2015	and	Visual	Studio	Code?
Community	Edition
Professional	and	Enterprise	Editions
Visual	Studio	Code

Running	ASP.NET	Core	on	Windows,	Mac	OS	X,	and	Linux
ASP.NET	Core	on	Windows
ASP.NET	Core	on	Mac	OS	X
ASP.NET	Core	on	Linux

Summary
2.	Building	Your	First	ASP.NET	Core	Application

Project	templates	in	Visual	Studio	2015
Empty	template
Web	API	template
Web	Application	template

WOW! eBook
www.wowebook.org

Hello,	ASP.NET	-	your	first	ASP.NET	application
Writing	a	response
Launching	the	application
Web	files	and	folders

Models,	views,	and	controllers	-	an	MVC	refresher
Controllers
Models
Views

Web	configuration	with	project.json
Dependencies	and	frameworks
Commands	and	tools
Bundling	and	publishing

Summary
3.	Understanding	MVC

Building	controllers
Controller	methods
Basic	controllers
URL	routes	and	conventions

Implementing	views
Basic	views
Tag	helpers	in	views
ViewData,	ViewBag,	and	TempData

Designing	models	and	ViewModels
Creating	models
Binding	models	to	views
ViewModels	and	mapping

Bringing	it	all	together
Scaffolding,	validation,	and	model	binding
Database	setup	and	data	entry
Exception	handling

Summary
4.	Using	Web	APIs	to	Extend	Your	Application

Understanding	a	Web	API
The	case	for	Web	APIs
Creating	a	new	Web	API	project	from	scratch
Building	your	Web	API	project

Configuring	the	Web	API	in	your	web	application
Setting	up	dependencies
Parts	of	a	Web	API	project
Running	the	Web	API	project

Adding	routes	to	handle	anticipated	URL	paths
Understanding	routes
Setting	up	routes
Testing	routes

WOW! eBook
www.wowebook.org

Consuming	a	Web	API	from	a	client	application
Testing	with	external	tools
Consuming	a	Web	API	from	a	mobile	app
Consuming	a	Web	API	from	a	web	client

Summary
5.	Interacting	with	Web	API	using	JavaScript

Using	JavaScript	to	interact	with	Web	API
Preparing	the	server-side	code
Client-side	JavaScript
JavaScript	frameworks

Single-page	applications	with	AngularJS
Getting	started	with	AngularJS
AngularJS	syntax	and	features
Building	a	web	application	with	AngularJS

Model-View-ViewModel	(MVVM)	with	KnockoutJS
Getting	started	with	KnockoutJS
KnockoutJS	syntax	and	features
Building	a	web	application	with	KnockoutJS

Task	runners,	bundling,	and	minification	using	Bower,	Grunt,	and	Gulp
Why	do	we	need	task	automation?
Using	Bower	as	your	package	manager
Using	Gulp	and	Grunt	as	task	runners

Summary
6.	Using	Entity	Framework	to	Interact	with	Your	Database	in	Code

Object-relational	mapping	in	.NET
Why	use	an	ORM?
Why	Entity	Framework?
The	evolution	of	Entity	Framework

EF	6.x	for	.NET	Framework	versus	EF	Core	1.0
What's	different	in	EF	Core
Getting	started	with	EF	Core
What	else	is	new?

Code	First	approach	to	database	design	and	relationships
Updating	the	models
Updating	the	controllers
Updating	the	views

EF	Code	First	migrations	for	database	versioning	and	maintenance
Setting	up	migrations
Adding	and	removing	migrations
Running	your	application

Summary
7.	Dependency	Injection	and	Unit	Testing	for	Robust	Web	Apps

Understanding	IoC
Pros	and	cons	of	DI

WOW! eBook
www.wowebook.org

SOLID	principles	and	Gang	of	Four	patterns
Loose	coupling

Implementing	DI	in	ASP.NET	Core
Lifecycle	management
Constructor	injection	versus	action	injection
Verifying	the	expected	behavior

DI	options	in	ASP.NET	Core
Built-in	IoC
Autofac
Other	alternatives

Writing	unit	tests
Setting	up	a	test	project
Running	unit	tests
Going	beyond	the	basics

Summary
8.	Authentication,	Authorization,	and	Security

Enabling	authentication	in	ASP.NET
High-level	overview
Authentication	configuration
External	service	providers

Using	authorization	for	application	features
High-level	overview
Basic	authorization
Roles	and	claims

Protecting	your	data
Data	protection	in	ASP.NET	Core
Implementing	data	protection
How	it	all	works

Implementing	web	application	security
Cross-site	scripting
Anti-forgery
Cross-origin	requests

Summary
9.	Deploying	Your	Application

Deployment	options
Environment	configuration
Deploying	your	web	app
Deploying	your	database

Deploying	to	IIS
Setting	up	IIS
Using	the	filesystem
Importing	a	publish	profile

Deploying	to	Azure,	Microsoft's	cloud	platform
Creating	a	web	app

WOW! eBook
www.wowebook.org

Creating	a	virtual	machine
Deploying	to	Azure

Continuous	integration
Preparing	for	CI
Setting	up	Continuous	Deployment
The	pitfalls	of	CI

Summary

WOW! eBook
www.wowebook.org

ASP.NET	Core	Essentials

WOW! eBook
www.wowebook.org

ASP.NET	Core	Essentials
Copyright	©	2016	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,	or
transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its	dealers
and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused	directly	or
indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.	However,
Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	September	2016

Production	reference:	1160916

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	

B3	2PB,	UK.

ISBN	978-1-78588-915-8

www.packtpub.com

WOW! eBook
www.wowebook.org

http://www.packtpub.com

Credits

Author

Shahed	Chowdhuri

Copy	Editor

Safis	Editing

Reviewer

Steve	Albers

Project	Coordinator

Ulhas	Kambali

Commissioning	Editor

Dipika	Gaonkar

Proofreader

Safis	Editing

Acquisition	Editor

Sonali	Vernekar

Indexer

Rekha	Nair

Content	Development	Editor

Prashanth	G

Graphics

Kirk	D'Penha

Technical	Editor

Sushant	S	Nadkar

Production	Coordinator

Melwyn	Dsa

WOW! eBook
www.wowebook.org

About	the	Author
Shahed	Chowdhuri	has	over	18	years	of	experience	in	the	field	of	professional	software
development,	and	is	currently	a	Senior	Technical	Evangelist	at	Microsoft	Corporation.	He
began	his	career	with	what	is	now	known	as	Classic	ASP,	and	worked	with	ASP.NET	as	it
continued	to	evolve	over	the	years.	He	is	a	public	speaker	in	the	DC	metro	area	and	along	the
East	Coast	of	the	United	States.	He	serves	as	a	mentor	for	startups	and	indie	developers	at
1776	DC,	and	also	manages	multiple	developer	groups	on	Facebook	and	Meetup.	You	can
find	him	blogging	at	WakeUpAndCode.com	or	on	Twitter	via	@shahedC.

WOW! eBook
www.wowebook.org

http://wakeupandcode.com/

About	the	Reviewer
Steve	Albers	is	a	software	developer	and	speaker	living	in	Northern	Virginia.

WOW! eBook
www.wowebook.org

www.PacktPub.com

WOW! eBook
www.wowebook.org

eBooks,	discount	offers,	and	more
Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and	ePub
files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as	a	print
book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with	us	at
customercare@packtpub.com	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up	for	a
range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books	and
eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt's	online	digital	book
library.	Here,	you	can	search,	access,	and	read	Packt's	entire	library	of	books.

WOW! eBook
www.wowebook.org

http://www.PacktPub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

WOW! eBook
www.wowebook.org

Preface
Web	applications	have	flourished	in	enterprise	application	development,	even	as	mobile
applications	continue	to	rise	in	popularity.	Moreover,	the	use	of	web	APIs	provides	greater
flexibility	when	it	comes	to	building	a	backend	that	can	serve	both	web	apps	and	mobile	apps.
With	ASP.NET	Core	1.0,	you	get	the	benefits	of	a	mature	programming	language	such	as	C#
with	the	performance	of	an	all-new	.NET	Core	that	allows	your	web	apps	and	web	APIs	to	run
on	Windows,	Mac,	and	Linux.

ASP.NET	Core	lets	you	choose	your	operating	system	during	development,	whether	you're
writing	your	code	on	a	Surface	Book,	MacBook	Air,	or	on	a	popular	distribution	of	Linux.
While	this	book	primarily	covers	development	on	Visual	Studio	2015	on	a	Windows	system,
you	will	find	links	to	online	guides	if	you	wish	to	set	up	your	environment	on	a	different
operating	system.

ASP.NET	Core	1.0	Essentials	will	introduce	you	to	Microsoft's	latest	revision	of	ASP.NET,
with	everything	you	need	to	get	started	today.	If	you	have	already	worked	with	ASP.NET	MVC
before,	you	will	get	a	refresher	of	a	few	things	you	already	know,	followed	by	what's	new.	If
you've	only	worked	with	ASP.NET	Web	Forms	or	other	competing	web	frameworks,	you	will
find	the	initial	chapters	very	useful	in	laying	the	groundwork	for	what	you	need	to	know.

WOW! eBook
www.wowebook.org

What	this	book	covers
Chapter	1,	Getting	Started	with	ASP.NET	Core,	teaches	you	about	ASP.NET	Core	1.0,
including	MVC	and	web	API.	This	chapter	will	explain	the	differences	between	the	full	.NET
Framework	4.6	and	.NET	Core,	while	introducing	Visual	Studio	2015	and	the	all-new	cross-
platform	Visual	Studio	Code.

Chapter	2,	Building	Your	First	ASP.NET	Core	Application,	shows	you	how	to	create	a	new
ASP.NET	Core	web	application.	This	chapter	will	dissect	the	parts	of	a	modern	ASP.NET	web
application,	while	explaining	what's	new	and	what's	changed.

Chapter	3,	Understanding	MVC,	teaches	you	all	about	ASP.NET	Core	MVC	by	going	deeper
into	controllers,	views,	and	models.	This	chapter	will	explain	how	to	create	all	the	parts	of	a
modern	MVC	application	and	then	bring	it	all	together.

Chapter	4,	Using	Web	API	to	Extend	Your	Application,	is	about	using	the	web	API	to	extend
your	web	application	to	support	web		and	mobile	applications.	This	chapter	will	explain	how
to	create	routes	and	configure	a	web	API	application	and	then	consume	it	from	a	client
application.

Chapter	5,	Interacting	with	Web	API	using	JavaScript,	teaches	you	how	to	interact	with	the
ASP.NET	web	API	using	straight	JavaScript	as	well	as	popular	frameworks	such	as	AngularJS
and	KnockoutJS.	This	chapter	will	also	cover	developer	tools,	which	automate	important
tasks	and	help	during	the	development	process.

Chapter	6,	Using	Entity	Framework	to	Interact	with	Your	Database	in	Code,	teaches	you	how
to	use	Entity	Framework	in	the	data	layer	of	your	web	application.	This	chapter	will	introduce
object-relational	mapping	(ORM)	tools	and	the	use	of	EF	Code	First	Migrations	.

Chapter	7,	Dependency	Injection	and	Unit	Testing	for	Robust	Web	Apps,	shows	you	how	to
implement	dependency	injection	by	using	Inversion	of	Control	.	This	chapter	will	cover	DI,
IoC	containers,	and	Microsoft's	new	built-in	support	for	dependency	injection.	The	chapter
will	also	cover	the	basics	of	unit	testing.

Chapter	8,	Authentication,	Authorization,	and	Security,	is	about	enabling	authentication	in
ASP.NET	web	applications	while	implementing	authorization	for	specific	application	features.
The	chapter	will	also	cover	guidelines	for	protecting	user	data	and	strategies	to	combat
common	security	vulnerabilities	in	web	applications.

Chapter	9,	Deploying	Your	Application,	covers	how	to	deploy	your	applications	to	IIS	on	a
web	server	or	on	Microsoft's	Azure	cloud	platform.	The	chapter	will	also	cover	the	use	of
continuous	integration	to	run	unit	tests	and	deploy	successfully	compiled	applications.

WOW! eBook
www.wowebook.org

What	you	need	for	this	book
To	learn	ASP.NET	Core	and	run	the	code	examples	for	this	book,	the	following	software	is
recommended:

Windows	7	or	higher	(Windows	10	recommended)
Visual	Studio	2015	Update	3	or	higher	(the	free	Community	Edition	is	OK)
Any	modern	web	browser,	such	as	Microsoft	Edge,	Google	Chrome,	or	Mozilla	Firefox
Optional:	Visual	Studio	Code	(Windows,	Mac,	Linux)

For	more	information	on	developing	for	and	running	ASP.NET	Core	on	systems	other	than
Windows,	please	consult	the	Running	ASP.NET	Core	on	Windows,	Mac	OS	X,	Linux		section	in
Chapter	1,	Getting	Started	with	ASP.NET	Core.	There,	you	will	find	a	high-level	overview	of
instructions	for	Mac	and	Linux,	with	links	to	online	guides	that	are	frequently	updated.

WOW! eBook
www.wowebook.org

Who	this	book	is	for
This	book	is	for	software	developers	who	have	experience	in	.NET,	preferably	with	C#	or
some	other	object-oriented	programming	language,	which	is	required	in	order	to	build
ASP.NET	Core	web	applications.	A	basic	understanding	of	web	application	development	is
also	essential.

WOW! eBook
www.wowebook.org

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds	of
information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their	meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,	pathnames,
dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	"Uses	the	HTTP	GET
method	with	optional	querystring	parameters"

A	block	of	code	is	set	as	follows:

app.UseMvc(routes	=>

{

				routes.MapRoute(

								name:	"default",

								template:	"{controller=Home}/{action=Index}/{id?}");

});

Any	command-line	input	or	output	is	written	as	follows:

dotnet	restore

dotnet	build

dotnet	ef	migrations	add	Initial

dotnet	ef	database	update

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	for
example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	"Enter	some	values	and	click
the	Create	button."

Note

Warnings	or	important	notes	appear	in	a	box	like	this.

Tip

Tips	and	tricks	appear	like	this.

WOW! eBook
www.wowebook.org

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this	book-
what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us	develop	titles
that	you	will	really	get	the	most	out	of.	To	send	us	general	feedback,	simply	e-
mail	feedback@packtpub.com,	and	mention	the	book's	title	in	the	subject	of	your	message.	If
there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

WOW! eBook
www.wowebook.org

http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help	you	to
get	the	most	from	your	purchase.

WOW! eBook
www.wowebook.org

Downloading	the	example	code
You	can	download	the	example	code	files	for	this	book	from	your	account	at
http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit
http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	to	our	website	using	your	e-mail	address	and	password.
2.	 Hover	the	mouse	pointer	on	the	SUPPORT 	tab	at	the	top.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box.
5.	 Select	the	book	for	which	you're	looking	to	download	the	code	files.
6.	 Choose	from	the	drop-down	menu	where	you	purchased	this	book	from.
7.	 Click	on	Code	Download.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the	folder	using	the
latest	version	of:

WinRAR	/	7-Zip	for	Windows
Zipeg	/	iZip	/	UnRarX	for	Mac
7-Zip	/	PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at
https://github.com/PacktPublishing/ASPdotNET-Core-Essentials.	We	also	have	other	code
bundles	from	our	rich	catalog	of	books	and	videos	available	at
https://github.com/PacktPublishing/.	Check	them	out!

WOW! eBook
www.wowebook.org

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/ASP.NET-Core-Essentials
https://github.com/PacktPublishing/

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do	happen.
If	you	find	a	mistake	in	one	of	our	books-maybe	a	mistake	in	the	text	or	the	code-we	would	be
grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other	readers	from
frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find	any	errata,
please	report	them	by	visiting	http://www.packtpub.com/submit-errata,	selecting	your	book,
clicking	on	the	Errata	Submission	Form	link,	and	entering	the	details	of	your	errata.	Once
your	errata	are	verified,	your	submission	will	be	accepted	and	the	errata	will	be	uploaded	to
our	website	or	added	to	any	list	of	existing	errata	under	the	Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the	search
field.	The	required	information	will	appear	under	the	Errata	section.

WOW! eBook
www.wowebook.org

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come	across
any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with	the
location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	copyright@packtpub.com	with	a	link	to	the	suspected	pirated	material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

WOW! eBook
www.wowebook.org

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us
at	questions@packtpub.com,	and	we	will	do	our	best	to	address	the	problem.

WOW! eBook
www.wowebook.org

Chapter	1.		Getting	Started	with	ASP.NET	Core
Active	Server	Pages	was	first	made	available	on	Microsoft's	IIS	web	server	in	the	mid-1990s.
Fast-forward	about	20	years,	and	ASP.NET	Core	(that	is,	ASP.NET	5	while	in	development)
is	now	open	source	and	runs	on	Windows,	Linux,	and	OS	X.	Moreover,	Visual	Studio	is	now
available	as	a	cross-platform	lightweight	code	editor	in	addition	to	the	full-featured	IDE	on
Windows.

As	a	.NET 	developer,	you	can	take	advantage	of	all	the	recent	improvements,	while	building
on	the	experience	that	you	already	have.	The	.NET	Framework	has	evolved	beyond	the	full
framework	and	is	now	available	as	a	cross-platform	runtime	called	.NET	Core.

In	this	chapter,	we	will	discuss	the	following	principles	and	concepts	to	get	you	started	with
ASP.NET	Core:

.NET	architecture
ASP.NET	unified	programming	model
New	Visual	Studio	IDEs
Cross-platform	runtime

WOW! eBook
www.wowebook.org

ASP.NET	Core	-	Unifying	MVC,	Web	API,	and
Web	Pages
When	developers	hear	the	term	ASP.NET,	some	associate	it	with	ASP.NET	Web	Forms,	while
others	think	of	ASP.NET	MVC	or	even	Web	API.	Many	developers	have	started	their
journey	with	Web	Forms,	and	have	migrated	to	Model-View-Controller	(MVC)	in	recent
years.

The	adoption	of	ASP.NET	MVC	has	been	on	the	rise	for	years,	due	to	its	cleaner	code	and
testability.	While	you	can	still	develop	Web	Forms	on	.NET	4.x,	you	will	be	using	MVC	on
.NET	Core	1.0.	Fortunately,	ASP.NET	Core	runs	on	both	.NET	4.5.1+	and	.NET	Core,	so	you
can	choose	which	runtime	you	would	like	to	target.

Going	forward,	Microsoft	has	unified	MVC,	Web	API,	and	Web	Pages	in	ASP.NET	Core.
What	does	this	mean	for	you,	the	developer?	It	means	that	you	will	enjoy	more	consistency
when	building	your	application	with	MVC,	Web	API,	and	Web	Pages.	In	the	past,	MVC	and
Web	API	were	implemented	separately,	leading	to	duplication	and	inconsistencies,	but	with
ASP.NET	Core,	they	have	been	merged	into	a	single	programming	model.

WOW! eBook
www.wowebook.org

High-level	overview
If	you're	new	to	any	of	the	preceding	terms,	here's	a	high-level	overview:

ASP.NET	MVC:	Microsoft's	implementation	of	the	MVC	architectural	pattern,	used	for
building	test-friendly	web	applications	that	are	robust	yet	lightweight.
Web	API:	Microsoft's	answer	to	RESTful	APIs,	Web	API	allows	developers	to	build
HTTP	services	that	can	serve	as	a	backend	to	web	applications	and	mobile	apps.
Web	Pages:	Microsoft's	solution	for	creating	lightweight	dynamic	websites.	At	the	time
of	writing,	Web	Pages	is	not	available	in	ASP	.NET	Core	1.0	so	it	will	not	be	covered	in
this	book.

The	following	figure	illustrates	a	typical	ASP.NET	web	application	that	uses	both	MVC	and
Web	API.	Note	that	Web	API	can	be	used	to	serve	clients	other	than	web	browsers,	such	as
mobile	apps.	It's	important	to	mention	that	browsers	here	can	include	mobile	web	browsers	as
well:

WOW! eBook
www.wowebook.org

Version	numbers
You	may	have	noticed	that	I	mentioned	MVC	6	while	talking	about	ASP.NET	Core.	ASP.NET
MVC	6	has	been	renamed	ASP	.NET	Core	1.0	MVC.	To	keep	track	of	all	the	new	version
numbers,	the	following	is	a	handy	list	of	what	you	need	to	know:

C#	6.0
ASP.NET	Core:

Runs	on	.NET	Core	1.0	or	.NET	Framework	4.5.1+

.NET	Framework	4.6.2	(at	the	time	of	writing)

.NET	Core	1.0
ASP.NET	Core	1.0	MVC
SignalR	3	(not	released	at	the	time	of	writing)

WOW! eBook
www.wowebook.org

Putting	it	all	together
Now	that	you're	familiar	with	the	moving	parts	of	ASP.NET	Core	and	its	various	version
numbers,	how	will	you	decide	which	parts	to	use?	The	good	news	is	that	you	won't	have	to
figure	it	all	out	before	you	get	started	on	your	project.

Think	about	the	requirements	of	your	web	software	project	and	the	needs	of	your	customers.
Choose	the	technologies	that	make	sense	for	you	and	your	team,	and	get	started	on	a
Minimum	Viable	Product	(MVP).

If	you	need	to	support	web	browsers,	go	with	ASP.NET	MVC	and	build	responsive	web
applications	that	look	good	on	any	screen	size.	If	you	need	to	extend	your	application	with
Web	API,	expose	only	what	needs	to	be	exposed.

If	you	need	real-time	functionality,	SignalR	is	a	great	place	to	start.	At	the	time	of	writing,
Microsoft	has	announced	that	SignalR	3	will	not	be	included	with	the	1.0	release	of	ASP.NET
Core.	As	a	result	of	this,	SignalR	3	will	not	be	covered	in	this	book.	For	more	information,
stay	tuned	to	the	SignalR	website:		http://www.asp.net/signalr	.

WOW! eBook
www.wowebook.org

http://www.asp.net/signalr

Differences	between	.NET	Framework	and
.NET	Core
Since	the	inception	of	.NET	Framework,	there	has	always	been	one	release	at	a	time.
Whenever	a	newer	version	was	released,	you	could	upgrade	to	the	latest	version	or	install
multiple	versions	side	by	side.	But	there	was	always	one	single	latest	version.

Going	forward,	there	are	now	two	distinct	versions:	the	full	.NET	Framework	and	the	all-new
.NET	Core.	While	ASP.NET	Core	web	applications	can	run	on	either	one	of	them,	you	will
decide	which	is	more	suitable	for	your	needs.	You	can	change	the	runtime	during
development	or	during	release.	Best	of	all,	you	can	deploy	the	runtime	alongside	your
released	product,	which	allows	multiple	versions	of	.NET	to	be	deployed	to	the	same	server.

The	following	screenshot	illustrates	how	ASP.NET	Core	runs	on	both	.NET	Framework	4.6
and	.NET	Core	1.0:

WOW! eBook
www.wowebook.org

Full	.NET	Framework	4.6
Even	with	the	release	of	.NET	Core,	there	is	still	a	place	for	the	full	.NET	Framework.	It	will
continue	to	be	the	framework	of	choice	for	rich	Windows	desktop	applications,	created	with
Windows	Presentation	Foundation	(WPF)	or	Windows	Forms.	It	will	be	one	of	two
choices	for	ASP.NET	Core	developers.

For	ASP.NET	4	developers,	.NET	Framework	4.6	will	be	an	in-place	replacement	for	.NET
4.x	runtimes.	This	includes	.NET	4,	4.5,	4.5.1,	and	4.5.2.	One	good	reason	to	upgrade	to	.NET
4.6	is	the	added	benefit	of	new	improvements	such	as	better	compilation	and	added	language
features.

WOW! eBook
www.wowebook.org

Lightweight	.NET	Core
The	new	.NET	Core	is	a	lightweight	cross-platform	subset	of	the	full	.NET	Framework	that
makes	its	home	on	Windows,	Linux,	and	OS	X.	It	is	expected	to	leap	past	the	.NET	Framework
in	new	features	that	may	make	their	way	back	to	the	.NET	Framework.

It	is	worth	noting	that	.NET	Core	is	not	an	option	for	Windows	desktop	developers	or
ASP.NET	4	developers.	In	addition	to	supporting	ASP.NET	Core	web	applications	with	the
CoreCLR	runtime,	.NET	Core	also	includes	the	.NET	native	runtime,	which	is	specifically
used	for	Universal	Windows	Applications	on	Windows	10.

WOW! eBook
www.wowebook.org

Running	ASP.NET	Core	on	.NET	Framework	versus	.NET
Core
To	recap,	let's	focus	on	the	following	benefits	of	running	an	ASP.NET	Core	web	application
on	.NET	Core,	in	addition	to	its	cross-platform	support:

Flexibility:	With	.NET	Core,	web	applications	can	be	deployed	with	a	specific	version	of
the	.NET	Core	framework,	which	will	allow	you	to	deploy	each	application	with	only	the
version	that	it	needs
Performance:	With	.NET	Core,	you'll	enjoy	performance	benefits	due	to	its	lower
memory	footprint	and	faster	start-up	times

Whether	you	run	ASP.NET	on	the	full	.NET	Framework	or	the	new	.NET	Core,	you'll	enjoy	a
modern	application	framework	that	eases	you	into	cloud	deployment	and	facilitates	faster
development	with	dynamic	compilation.

WOW! eBook
www.wowebook.org

What's	new	with	Visual	Studio	2015	and	Visual
Studio	Code?
There	are	several	different	SKUs	of	Visual	Studio	available	at	each	release	cycle.	Starting
with	Visual	Studio	2013,	Microsoft	added	a	Community	Edition	as	a	free	alternative	to	the
Professional	Edition	for	students,	open	source	developers,	and	small	teams.	Alongside	Visual
Studio	2015,	Microsoft	has	also	added	a	cross-platform	code	editor	named	Visual	Studio
Code.

For	developers,	the	following	are	the	current	offerings	of	Visual	Studio	2015:

Community	Edition
Professional	Edition
Enterprise	Edition

You	may	recall	that	previous	versions	of	Visual	Studio	also	included	a	Premium	Edition	and
Ultimate	Edition.	These	two	have	been	merged	into	the	Enterprise	Edition.

For	a	high-level	overview	of	the	various	editions	of	Visual	Studio,	you	may	refer	to	the
comparison	table	at	the	following	URL:

https://www.visualstudio.com/products/vs-2015-product-editions

WOW! eBook
www.wowebook.org

https://www.visualstudio.com/products/vs-2015-product-editions

Community	Edition
Before	the	Community	Edition,	many	students,	independent	developers,	and	small	teams	used
the	free	Express	Edition.	However,	the	Express	Edition	was	missing	many	Pro	features,	such
as	extensions.	Now,	with	the	Community	Edition,	non-enterprise	developers	can	get	a	full-
featured	IDE	for	cross-platform	application	development.

Better	yet,	the	Community	Edition	opens	the	door	to	thousands	of	Visual	Studio	extensions.	If
you	don't	find	what	you	need	in	the	Visual	Studio	Gallery,	you	can	also	create	your	own
extensions.

WOW! eBook
www.wowebook.org

Professional	and	Enterprise	Editions
For	enterprise	developers	and	professional	teams	with	more	needs,	you	can	choose	from	the
Professional	or	Enterprise	Editions.	Beyond	the	full-IDE	features	of	the	Community	Edition,
the	Professional	Edition	also	gives	you	access	to	the	CodeLens,	Team	Foundation	Server
(TFS),	and	Agile	project	planning	tools.	CodeLens	offers	a	deeper	look	into	your	code
history,	while	TFS	can	be	used	for	source	control	and	continuous	integration.

The	Enterprise	Edition	gives	you	all	of	the	above,	plus	enterprise-grade	tools	for	software
architecture,	modeling,	testing,	and	code	coverage.

For	a	detailed	look	at	the	various	editions	of	Visual	Studio,	you	may	refer	to	the	comparison
table	at		https://www.visualstudio.com/products/compare-visual-studio-2015-products-vs	.

WOW! eBook
www.wowebook.org

https://www.visualstudio.com/products/compare-visual-studio-2015-products-vs

Visual	Studio	Code
To	provide	even	more	choice	to	developers	today,	Microsoft	has	started	offering	a	cross-
platform	code	editor	aptly	called	Visual	Studio	Code.	This	new	offering	is	free	and	available
for	your	platform	of	choice:	Windows,	Mac	OS	X,	and	Linux.

Visual	Studio	Code	is	primarily	made	for	web	and	cloud	applications,	such	as	ASP.NET	web
applications	or	Node.js	backend	code.	But	you	are	free	to	use	it	for	other	uses,	such	as	Unity
game	development	and	cross-platform	application	development	with	most	popular	languages
such	as	C++,	Java,	PHP,	Python,	Ruby,	and	many	others.

For	those	of	you	who	are	wondering,	Visual	Studio	Code	bears	a	striking	resemblance	to	the
popular	Sublime	Text	and	is	a	good	alternative	to	it.	The	following	screenshot	shows	Visual
Studio	Code:

Visual	Studio	Code:project.json
WOW! eBook

www.wowebook.org

For	more	information	on	other	languages,	you	may	refer	to	
https://code.visualstudio.com/Docs/languages	.

All	of	these	versions	of	Visual	Studio	2015	and	Visual	Studio	Code	can	be	used	for	ASP.NET
Core	web	application	development.	When	you	create	a	new	project	in	Visual	Studio	2015,
you'll	see	project	templates	for	an	Empty	project,	a	Web	API	project,	and	a	Web	Application
project,	as	shown	in	the	following	screenshot.	Visual	Studio	Code,	on	the	other	hand,	is
file/folder-based	(as	opposed	to	project/solution-based),	so	you	can	open	a	project's	files	by
opening	a	folder	that	contains	a	supported	project:

In	addition	to	Visual	Studio,	you	could	also	use	Yeoman	to	create	a	new	ASP.NET	project	to
work	on.	Yeoman	is	a	scaffolding	tool	that	can	help	you	generate	various	modern	web	apps,
including	ASP.NET.	For	more	information	on	Yeoman,	check	out	their	website	at	
http://yeoman.io	.

This	book	will	focus	primarily	on	Visual	Studio	2015.	All	the	screenshots	and	instructions
will	use	Visual	Studio	2015	Community	Edition	and	the	Edge	web	browser	running	on

WOW! eBook
www.wowebook.org

https://code.visualstudio.com/Docs/languages
http://yeoman.io

Windows	10.	If	you	use	a	different	editor,	operating	system,	or	web	browser,	you	will	have	to
perform	the	equivalent	steps	for	your	own	environment.	The	application	code	should	remain
the	same,	regardless	of	the	platform.

WOW! eBook
www.wowebook.org

Running	ASP.NET	Core	on	Windows,	Mac	OS
X,	and	Linux
With	ASP.NET	Core,	you	can	now	develop	on,	and	deploy	your	applications	to,	Mac	OS	X
and	Linux,	in	addition	to	Windows.	If	you	worked	with	Active	Server	Pages	(ASP)	a	long
time	ago,	you	may	remember	Chili!Soft	ASP,	a	third-party	solution	web	server	plugin	that
allowed	ASP	to	run	on	Solaris,	Linux,	and	other	Unix	platforms.	The	new	.NET	Core	is	much
more	than	that.

With	a	cross-platform	runtime	that	can	be	deployed	along	with	your	web	application,	.NET
Core	provides	official	support	from	Microsoft	to	enjoy	the	benefits	of	ASP.NET	on	your
favourite	platform.	With	the	aforementioned	Visual	Studio	Code,	you	can	also	easily	build
ASP.NET	Core	applications	on	those	platforms.

Although	this	book	will	primarily	cover	ASP.NET	Core	development	on	Windows,	the
following	instructions	will	help	you	get	your	environment	set	up	on	OS	X	and	Linux	as	well.

WOW! eBook
www.wowebook.org

ASP.NET	Core	on	Windows
Setting	up	your	development	environment	for	ASP.NET	Core	on	Windows	is	pretty
straightforward.	If	you	have	Visual	Studio	2015	Update	3	with	the	latest	Web	Developer	tools
installed,	you	already	have	what	you	need.	The	new	ASP.NET	Core	templates	are	enough	to
get	you	started.

If	you	prefer,	you	can	also	use	Visual	Studio	Code	on	Windows	if	you	just	need	a	basic	code
editor	on	one	or	more	development	machines.	Be	aware	that	the	Community	Edition	is	only
for	non-enterprise	customers,	so	you	cannot	install	it	alongside	the	new	Professional	or
Enterprise	Editions.

WOW! eBook
www.wowebook.org

ASP.NET	Core	on	Mac	OS	X
To	set	up	your	development	environment	on	Mac	OS	X,	you	can	start	by	installing	the	latest
version	of	Visual	Studio	Code.	You	can	also	install	ASP.NET	Core	from	a	command	line.
Here	is	a	high-level	three-step	process	to	get	you	started:

1.	 Install	Open	SSL.
2.	 Install	.NET	Core	SDK.
3.	 Install	Visual	Studio	Code	for	OS	X.

For	up-to-date	detailed	instructions	(and	command-line	instructions)	for	setting	up	ASP.NET
Core	on	Mac	OS	X,	you	may	refer	to	Microsoft's	official	guide	at	
https://www.microsoft.com/net/core#macos	.

WOW! eBook
www.wowebook.org

https://www.microsoft.com/net/core#macos

ASP.NET	Core	on	Linux
Setting	up	your	development	environment	on	Linux	is	a	little	more	complicated.	As	you	may
expect,	you	can	get	started	by	installing	Visual	Studio	Code	on	your	Linux	machine.

To	summarize	the	steps	to	set	up	the	runtime,	you	will	have	to	do	the	following:

1.	 Install	prerequisites,	which	may	vary	for	your	version	of	Linux.
2.	 Install	.NET	Core	SDK.
3.	 Install	Visual	Studio	Code	for	Linux.

For	up-to-date	detailed	instructions	on	setting	up	ASP.NET	Core	on	Linux,	you	may	refer	to
Microsoft's	official	guide	at	the	following	URL.	Select	a	Linux	distribution	to	see	more
details	about	that	particular	distro,	such	as	Red	Hat,	Ubuntu,	Debian,	and	many	others,	at	
https://www.microsoft.com/net/core	.

WOW! eBook
www.wowebook.org

https://www.microsoft.com/net/core

Summary
In	this	chapter,	we've	taken	an	introductory	look	at	ASP.NET	Core,	the	.NET	Framework,	and
the	various	versions	of	Visual	Studio.	We	also	learned	about	the	cross-platform	nature	of
.NET	Core,	and	provided	a	quick	overview	of	how	you	can	set	up	your	development
environment	on	various	operating	systems.

In	the	next	chapter,	we	will	learn	about	how	you	can	build	your	very	first	ASP.NET	Core	web
application	in	Visual	Studio	2015	running	on	Windows	10.	We	will	go	through	project
templates	and	also	dissect	a	basic	web	application	to	better	understand	its	parts	and	its
configuration.

WOW! eBook
www.wowebook.org

Chapter	2.		Building	Your	First	ASP.NET	Core
Application
Whether	you're	a	seasoned	ASP.NET	developer	or	a	little	rusty	on	controller	methods,	the
best	way	to	get	up-to-speed	on	ASP.NET	Core	is	with	a	Hello	World	application.	In	addition
to	new	configuration	files,	there	are	also	new	project	types	to	learn	about.

Going	beyond	its	traditional	reliance	on	IIS	or	IIS	Express,	your	new	ASP.NET	web
application	can	also	be	self-hosted	without	a	web	server.	This	new	paradigm	is	the	basis	for
its	cross-platform	ambitions.

In	this	chapter,	we	will	discuss	the	following	principles	and	concepts	to	help	you	become
familiar	with	the	basic	structure	of	an	ASP.NET	Core	application:

Project	templates
Models,	views,	and	controllers
Web	configuration

WOW! eBook
www.wowebook.org

Project	templates	in	Visual	Studio	2015
The	quickest	way	to	expose	yourself	to	the	new	project	templates	in	Visual	Studio	2015	is	to
start	using	them.	For	ASP.NET	Core,	there	are	currently	three	project	templates	that	you	can
use.

Launch	Visual	Studio	2015,	then	click	File	|	New	|	Project.	Within	Visual	C#	|	Web	templates,
select	a	template	for	ASP.NET	Core	Web	Application	to	proceed.	As	of	the	Core	1.0	release,
there	are	two	different	versions:	one	that	uses	the	all-new	.NET	Core	runtime,	and	another	that
uses	the	full	.NET	Framework,	as	shown	in	the	following	screenshot:

In	pre-release	versions,	there	were	other	project	types	available	as	the	Web	templates.	These
are	now	listed	under	.NET	Core	instead,	and	are	as	follows:

ASP.NET	Web	Application
Class	Library	(Package)
Console	Application	(Package)

The	project	template	for	ASP.NET	Core	1.0	creates	a	console	application	that	has	a	Main
method	in	a	Program.cs	file	as	its	entry	point.	This	is	similar	to	other	console	applications
you	may	already	be	familiar	with.	When	you	proceed	with	any	of	the	ASP.NET	Core	options,
you	will	be	greeted	with	the	all-new	ASP.NET	Core	templates.	The	following	screenshot
shows	the	available	project	templates	under	ASP.NET	Core	Templates:

WOW! eBook
www.wowebook.org

The	new	templates	are	available	as	follows:

Empty
Web	API
Web	Application

You'll	note	the	absence	of	Web	Forms	in	the	list	of	new	templates.	As	mentioned	in	Chapter	1	,
Getting	Started	with	ASP.NET	Core,	the	new	ASP.NET	favors	MVC	over	Web	Forms,	which	it
eschews	in	its	cross-platform	implementations.

WOW! eBook
www.wowebook.org

Empty	template
One	common	complaint	from	developers	using	some	older	versions	of	Visual	Studio	has
been	that	the	Empty	template	wasn't	empty	enough.	As	a	result,	those	developers	would	start
with	the	Empty	template,	only	to	start	stripping	out	components	of	the	newly	created	project.

This	was	improved	in	Visual	Studio	2013	and	continues	to	work	as	expected	in	Visual	Studio
2015.	Selecting	the	Empty	option	ensures	that	you	will	have	a	barebones	project	with	just
enough	to	get	started,	as	shown	in	the	following	screenshot:

Within	an	Empty	template	project,	you	can	identify	the	following	items:

(Project)	Properties
References
wwwroot	(web	root	folder)
Dependencies	(initially	empty)
Program.cs	(contains	the	Main	method	for	the	entry	point)
project.json	(minimal	settings)
Project_Readme.html	(information	about	ASP.NET	Core)

WOW! eBook
www.wowebook.org

Startup.cs:
ConfigureServices()

Configure()

Main()

web.config	(for	IIS	launch	only;	use	JSON-based	files	for	configuration)

WOW! eBook
www.wowebook.org

Web	API	template
The	ASP.NET	Web	API	template	was	released	with	ASP.NET	MVC	4	back	in	2012.	It	allowed
ASP.NET	developers	to	easily	build	HTTP	services	to	be	consumed	by	web	or	mobile	clients.
With	ASP.NET	Core	MVC,	developers	can	enjoy	a	more	streamlined	experience
while	building	a	Web	API	in	an	MVC	project.

The	Web	API	template	is	a	great	starting	point	for	creating	RESTful	HTTP	services	for	your
web	project.	Selecting	the	Web	API	project	template	will	give	you	a	little	more	than	the	Empty
template.	The	structure	of	a	Web	API	project	is	shown	in	the	following	screenshot:

Within	a	Web	API	template	project,	you	can	identify	the	following	items:

(Project)	Properties
launchSettings.json

WOW! eBook
www.wowebook.org

saeid
Highlight

References
wwwroot	(web	root	folder)
Dependencies	(initially	empty)
Controllers	folder

ValuesController.cs

appsettings.json	(minimal	settings)
Program.cs	(contains	the	Main	method	for	the	entry	point)
project.json	(basic	settings	and	references)
Project_Readme.html	(information	about	ASP.NET	Core)
Startup.cs

Startup()	constructor
ConfigureServices()

Configure()

Going	beyond	the	Empty	template,	the	Web	API	template	has	the	following	additional	items:

ValuesController.cs
appsettings.json

WOW! eBook
www.wowebook.org

saeid
Rectangle

Web	Application	template
The	Web	Application	template	provides	a	lot	more	initial	code	and	content	than	any	of	the
other	templates.	This	is	a	good	starting	point	for	learning	about	the	ins	and	outs	of	ASP.NET
Core.	When	using	this	web	template,	click	on	the	Change	Authentication	button	to	include
Individual	User	Accounts	as	the	type	of	authentication	for	your	starter	application.	The
structure	of	a	Web	Application	project	is	shown	in	the	following	screenshot:

WOW! eBook
www.wowebook.org

Within	a	Web	Site	template	project,	you	can	identify	the	following	items.	First,	there	are	some
top-level	items	above	the	folders	in	your	project:

(Project)	Properties
launchSettings.json

References
wwwroot

css
images
js
lib
_references.js
favicon.ico

Dependencies
Bower	(for	Bootstrap,	jQuery,	and	others)

Next,	there	are	several	folders	for	your	code,	MVC	components,	and	DB	migrations,	as
follows:

Controllers	folder
Class	files	for	each	controller

Data
Migrations	subfolder	for	initial	migration
DB	context	snapshot

Models
Models	and	ViewModels

Services
Service	classes,	such	as	for	messaging	and	e-mail

Views
Views	organized	in	subfolders	per	controller
Shared	views
_ViewImports.cshtml	(shared	imports	for	views)
_ViewStart.cshtml	(share	view	header	for	views)

Finally,	there	are	several	JSON	configuration	files	and	a	couple	of	.cs	code	files,	such	as
appsettings.json,	bundleconfig.js,	Program.cs,	project.json,	Project_Readme.html,	and
Startup.cs:

appsettings.json	(app	settings,	such	as	connection	strings)
bundleconfig.json	(bundling	and	minification	configuration)
Program.cs	(entry	point	with	Main	method)

WOW! eBook
www.wowebook.org

project.json	(project	settings,	server-side	references)
Project_Readme.html	(information	about	ASP.NET	Core)
Startup.cs

Startup()	constructor
ConfigureServices()

Configure()

web.config	(for	IIS	launch	only;	use	JSON-based	files	for	configuration)

You	may	have	to	click	on	the	Show	All	Files	icon	in	Solution	Explorer	to	see	additional	files
that	may	be	initially	hidden.

WOW! eBook
www.wowebook.org

Hello,	ASP.NET	-	your	first	ASP.NET
application
Most	programming	books	and	tutorials	help	you	get	started	with	a	Hello	World	application.
This	refers	to	a	simple	application	that	has	all	the	basic	elements	of	an	application	to	get	it	up-
and-running	in	your	environment.	If	the	words	Hello	World	can	be	displayed	on	a	screen	by
the	application,	you	have	succeeded	in	setting	it	up	correctly.

Create	a	new	ASP.NET	web	application	project	and	select	the	Empty	template	as	described
earlier	this	chapter.	This	should	provide	a	basic	template	for	your	Hello	World	application.

WOW! eBook
www.wowebook.org

Writing	a	response
By	default,	the	empty	template	includes	a	Startup.cs	class	with	a	Configure()	method	in	it.
This	method	should	have	a	line	of	code	that	writes	Hello	World	to	the	HTTP	response	output
stream,	to	be	displayed	in	your	browser.	The	following	code	is	for	the	Configure()	method:

public	void	Configure(IApplicationBuilder	app,	

				IHostingEnvironment	env,	ILoggerFactory	loggerFactory)	

{	

				loggerFactory.AddConsole();	

				if	(env.IsDevelopment())	

				{	

								app.UseDeveloperExceptionPage();	

				}	

				app.Run(async	(context)	=>	

				{	

								await	context.Response.WriteAsync("Hello	World!");	

				});	

}	

The	Configure()	method	can	be	used	to	configure	the	HTTP	request	pipeline	by	enabling
static	files,	Identity,	MVC,	and	others.	It	can	be	used	to	set	a	default	route	inside	the
Startup.cs	class,	replacing	the	need	to	have	a	global.asax	file.

Note	that	the	Configure()	method	is	called	after	the	ConfigureServices()	method,	which	can
be	used	to	add	various	services,	such	as	Entity	Framework,	Identity,	and	MVC.	Both	of	these
methods	are	called	by	the	runtime.

To	change	the	text	that	is	being	displayed,	simply	replace	Hello	World!	with	Hello,	ASP.NET
Core!.	This	text	change	doesn't	do	anything	functionally	different	than	what	the	Empty
template	provides,	but	it	does	expose	you	to	the	Startup	class	and	its	methods.

WOW! eBook
www.wowebook.org

saeid
Highlight

saeid
Highlight

Launching	the	application
To	launch	your	application,	press	F5	on	your	keyboard,	or	click	Start	Debugging	in	the
Debug	menu.	This	should	launch	the	application	in	your	default	web	browser,	as	shown	in	the
following	screenshot:

You	may	also	be	familiar	with	the	green	Play	button,	which	launches	your	application,	on	the
toolbar	in	Visual	Studio.	In	Visual	Studio	2015,	this	button	offers	some	new	choices,	as	shown
in	the	following	screenshot:

WOW! eBook
www.wowebook.org

The	choices	are	as	follows:

IIS	Express:	The	default	option	for	launching	in	the	default	web	browser
Internal	Web	Host:	Named	after	the	project's	name
web,	gen,	ef,	and	others:	Various	commands,	configurable	through	the	project.json
file
Browse	With:	Change	the	default	browser	or	add	new	browsers

You	may	have	noticed	that	you	can	select	a	different	web	browser	while	debugging.	Simply
browse	the	list	of	web	browsers	to	select	a	different	browser	for	debugging	purposes,	as
shown	in	the	following	screenshot:

You	may	also	right-click	your	project	in	Solution	Explorer	to	access	its	properties.	In	the
project	properties	panel,	click	on	the	Debug	tab	to	further	customize	each	debugging	profile,
as	shown	in	the	following	screenshot:

WOW! eBook
www.wowebook.org

WOW! eBook
www.wowebook.org

Web	files	and	folders
Now	let's	take	a	deeper	look	at	all	of	these	files	and	folders	in	the	Web	Application	template
project	to	understand	their	purpose.	First,	we'll	focus	on	the	configuration	files,	starting	with
bower.json.

This	JSON	configuration	file	is	used	to	manage	Bower	dependencies.	It	starts	off	with	a	list	of
dependencies,	followed	by	an	optional	detailed	configuration	for	each	dependency,	as	shown
in	the	following	screenshot:

You	will	notice	that	this	is	the	same	list	of	Bower	dependencies	that	appears	in	the	Solution
Explorer	panel,	as	shown	in	the	following	screenshot:

WOW! eBook
www.wowebook.org

Next,	let's	take	a	look	at	appsettings.json,	which	is	your	application	configuration	file.	With
ASP.NET	Core,	this	new	JSON	file	(temporarily	known	as	config.json	while	in	Beta)
replaces	the	need	to	store	your	settings	in	the	XML-based	web.config	file.	You	can	specify
your	configuration	file	in	your	Startup.cs	code.

Your	settings	file	may	look	like	this:

{	

		"ConnectionStrings":	{	

				"DefaultConnection":	"<YourDbConnString>"	

		},	

		"Logging":	{	

				"IncludeScopes":	false,	

				"LogLevel":	{	

						"Default":	"Debug",	

						"System":	"Information",	

						"Microsoft":	"Information"	

				}	

		}	

}	

Last	but	not	least,	we	have	project.json,	a	JSON	file	that	contains	project-specific

WOW! eBook
www.wowebook.org

saeid
Highlight

information	and	server-side	dependencies.	See	the	Bundling	and	publishing	section	in	this
chapter	for	more	information.

WOW! eBook
www.wowebook.org

saeid
Highlight

Models,	views,	and	controllers	-	an	MVC
refresher
For	those	of	you	not	familiar	with	MVC,	here's	a	quick	refresher	that	also	includes
information	that	is	new	to	ASP.NET	Core.	The	following	figure	shows	a	simple	architecture
diagram	that	represents	the	MVC	software	architectural	pattern:

Even	though	the	figure	shows	one	of	each	item,	you	can	have	multiple	models,	views,	and
controllers	in	your	figure.	Each	request	gets	routed	through	a	specific	controller	to	determine
the	result	that	will	be	displayed	in	the	user's	web	browser.

MVC	itself	wasn't	a	new	concept	when	Microsoft	first	released	ASP.NET	MVC.	But	it
immediately	introduced	.NET	developers	to	a	new	way	of	developing	web	applications.	The
benefits	over	Web	Forms	became	apparent	to	early	adopters:	clearer	separation	of	concerns,
better	testability,	and	lightweight	client	output	that	can	be	customized.

Some	developers	weren't	tempted	away	from	Web	Forms	for	a	variety	of	reasons:	a	new
learning	curve,	personal	preference,	corporate	requirements,	and	many	others.	Going
forward,	ASP.NET	MVC	becomes	more	necessary	since	Web	Forms	won't	be	supported	by
the	cross-platform	.NET	Core.	Moreover,	ASP.NET	Core	does	not	depend	on	System.Web	like
its	predecessors.

WOW! eBook
www.wowebook.org

So,	if	you	haven't	looked	at	MVC	yet,	now	is	a	great	time	to	do	so.

WOW! eBook
www.wowebook.org

Controllers
In	a	way,	controllers	are	the	heart	of	your	ASP.NET	MVC	application.	Each	controller	is
responsible	for	handling	user	requests,	based	on	a	matching	route.	Controllers	can	update
data	in	a	model,	and	then	select	a	view	to	return	back	to	the	user.

Every	controller	is	a	subclass	of	the	base	Controller	class,	which	lives	in	the
Microsoft.AspNetCore.Mvc	namespace.	This	is	different	from	the	Controller	class	from
prior	versions	of	ASP.NET,	which	lived	in	the	System.Web.Mvc	namespace.	In	fact,	the	new
Controller	base	class	is	also	used	by	Web	API	controllers.

In	MVC,	each	controller	typically	returns	an	IActionResult	from	its	action	methods.	For	web
application	projects,	this	could	be	a	view.	For	Web	API	projects,	this	could	be	a	set	of	data.	It
is	possible	to	return	both	views	and	results	from	a	controller.

WOW! eBook
www.wowebook.org

saeid
Highlight

saeid
Highlight

saeid
Highlight

Models
As	before,	your	models	will	embody	your	project's	data	domain.	Each	model	class	can
represent	entities	in	your	code,	while	decorated	by	attributes	surrounded	by	square	brackets.
This	kind	of	declarative	syntax	also	allows	you	to	add	validation	rules	inside	your	models.

A	model's	data	can	be	affected	by	the	controller	operating	on	it.	By	binding	your	models	to
your	views,	each	view	will	automatically	determine	what	to	display	and	how	to	display	it.

For	a	cleaner	architecture,	you	can	use	a	view-specific	model	(or	ViewModel)	to	bind	to	a
view.	You	can	use	a	repository	pattern	with	a	service	layer	for	models	that	reflect	your
database	entities	through	Entity	Framework.	This	will	let	you	have	UI	elements	that	don't	have
to	rely	on	the	structure	of	your	database	entities.

See	Chapter	6	,	Using	Entity	Framework	to	Interact	with	Your	Database	in	Code,	for	more
information	on	Entity	Framework,	an	Object-Relational	Mapping	(ORM)	framework	for
.NET	applications.

WOW! eBook
www.wowebook.org

saeid
Highlight

Views
The	views	in	your	application	are	probably	the	simplest	part	of	MVC.	Each	view	represents
the	UI	layer,	resulting	in	client-side	HTML,	CSS,	and	JavaScript	that	will	be	displayed	to	the
end	user.

Views	are	stored	in	.cshtml	files,	with	the	ability	to	include	server-side	code	and	client-side
code	in	the	same	file.	A	built-in	object	called	ViewBag	allows	you	to	store	your	own
properties	and	display	them	in	the	view.	The	ViewBag	object	and	its	properties	can	be
manipulated	by	your	controller	code.

Instead	of	switching	back	and	forth	between	server-side	code	and	client-side	code,	you	can
now	use	tag	helpers	in	your	views	for	smoother	syntax.	A	tag	helper	allows	you	to	use	custom
attributes	within	your	HTML	tags	that	may	be	familiar	to	developers	who	use	AngularJS.

See	Chapter	3,	Understanding	MVC,	for	more	information	on	tag	helpers	and	views.

WOW! eBook
www.wowebook.org

Web	configuration	with	project.json
In	the	project.json	file,	you	may	find	the	following	information:

userSecretsId:	A	GUID-like	value	used	for	working	with	user	secrets
dependencies:	A	list	of	server-side	dependencies
version:	The	project	version
frameworks:	.NET	Core	framework	name	and	version
build/runtime/publish	options:	Build/runtime	configuration	and	a	list	of	files/folders	to
include	when	publishing	the	web	app
scripts:	A	list	of	scripts	for	actions	that	can	be	triggered	by	specific	events,	such	as
prepublish,	postpublish,	and	others

The	following	screenshot	of	the	project.json	file	shows	the	contents	of	a	typical	project
configuration	file,	collapsed	to	fit	all	top-level	items:

WOW! eBook
www.wowebook.org

saeid
Line

Dependencies	and	frameworks
Within	the	dependencies	section	of	your	configuration	file,	you	will	find	a	list	of	all	your
server-side	dependencies,	such	as	ASP.NET	MVC,	Entity	Framework,	and	many	others.	These
are	also	visible	as	your	project	references	in	Solution	Explorer.

The	preceding	screenshot	shows	the	dependencies	section	expanded	to	reveal	the	references
and	their	version	numbers.	The	following	screenshot	shows	the	same	set	of	references	in
Solution	Explorer:

WOW! eBook
www.wowebook.org

WOW! eBook
www.wowebook.org

Commands	and	tools
Pre-release	versions	of	ASP.NET	Core	included	commands	that	could	be	configured	in	the
project.json	configuration	file	and	triggered	from	the	Visual	Studio	IDE.	The	following
screenshot	show	the	commands	section	of	the	configuration	file:

The	commands	section	is	no	longer	supported	in	ASP.NET	Core	1.0.	Instead,	there	is	a	new
tools	section	in	the	project.json	file,	which	can	be	used	to	specify	packages	containing	tools
for	your	project.

WOW! eBook
www.wowebook.org

Bundling	and	publishing
Finally,	we	have	sections	to	include	specific	components	for	publishing	when	it's	time	to
deploy	your	application.	The	following	screenshot	shows	the	publishOptions	section,
expanded	to	display	the	components	to	be	included:

WOW! eBook
www.wowebook.org

Summary
In	this	chapter,	we've	taken	a	look	at	the	basic	structure	of	an	ASP.NET	Core	1.0	web
application.	We	delved	deeper	into	the	parts	that	make	up	the	application,	including	the	all-new
configuration	files.	We	also	covered	the	basics	of	MVC	and	its	components.

In	the	next	chapter,	we	will	take	a	deep	dive	into	ASP.NET	Core	MVC.	We	will	build	a	sample
application	from	scratch	to	illustrate	the	features	of	models,	views,	and	controllers	in	an
ASP.NET	Core	MVC	web	application.

WOW! eBook
www.wowebook.org

Chapter	3.		Understanding	MVC
In	previous	chapter,	we	covered	a	quick	refresher	of	MVC	and	its	components	in	ASP.NET.	In
this	chapter,	we	will	go	deeper	into	MVC	in	ASP.NET	Core,	which	is	MVC	6	while	in	beta.

Two	common	questions	from	developers	are:	How	do	I	upgrade	my	older	MVC	projects	to
ASP.NET	Core	MVC?	Is	there	an	automatic	migration	process?	Migrating	from	MVC	5	to	the
new	MVC	in	ASP.NET	Core	involves	a	few	manual	steps,	since	there	is	no	automatic
migration	process.	You	can	copy	all	of	your	static	client-side	files	into	the	wwwroot	location
and	adjust	any	references	to	these	files	to	refer	to	the	correct	location.

For	server-side	code,	you	can	migrate	over	your	models,	views,	and	controllers	without
many	changes.	This	chapter	will	cover	what	you	need	to	know	about	each	of	the	following
areas:

Controllers
Views
Models

Parts	of	this	chapter	will	be	familiar	to	developers	who	have	already	worked	with	previous
versions	of	ASP.NET	MVC.	We	will	go	through	some	familiar	material,	while	revealing
newer	additions	to	MVC	along	the	way.

WOW! eBook
www.wowebook.org

Building	controllers
Your	MVC	controller	is	where	the	magic	happens.	Requests	come	in	from	the	end-user,	then
content	and	data	get	returned.	What	happens	in	between	is	up	to	you-the	developer.

WOW! eBook
www.wowebook.org

Controller	methods
By	default,	controller	methods	can	be	used	for	HTTP	GET	requests	using	the	[HttpGet]
attribute	or	omitting	this	action	verb	attribute	altogether,	as	it	is	the	default	behavior.	Most
likely,	you	have	already	been	using	the	following	HTTP	GET	and	POST	verbs:

HttpGet:	Uses	the	HTTP	GET	method	with	optional	querystring	parameters
HttpPut:	Uses	the	HTTP	POST	method	for	form	submissions	to	create	an	entity

In	addition	to	the	preceding,	you	should	also	be	aware	of	additional	HTTP	verbs	that	can	be
used	as	controller	attributes;	they	are	as	follows:

HttpPut:	Uses	the	HTTP	PUT	method	to	edit	an	existing	entity
HttpDelete:	Uses	the	HTTP	DELETE	method	to	delete	an	existing	entity
HttpPatch:	Allows	partial	model	updates	instead	of	a	full	PUT	request
AcceptVerbs:	Allows	multiple	action	verbs	to	be	specified

WOW! eBook
www.wowebook.org

saeid
Rectangle

saeid
Pencil

saeid
Rectangle

saeid
Highlight

Basic	controllers
Using	Visual	Studio,	you	can	add	a	basic	controller	and	gradually	add	code	to	it.	You	can	also
add	a	more	complete	controller	with	scaffolding,	which	includes	model	binding	and	action
methods	to	manipulate	the	model.	But	we'll	cover	that	later	in	this	chapter.

First,	let's	create	a	sample	project	in	which	we	will	add	a	basic	controller,	as	follows:

1.	 Create	a	new	ASP.NET	web	project	by	clicking	on	File	|	New	|	Project.
2.	 Select	ASP.NET	Web	Application	(.NET	Core).
3.	 Name	your	project	PatientRecords.
4.	 Select	Web	Application	under	the	list	of	ASP.NET	Core	Templates.
5.	 Click	Change	Authentication	to	switch	to	Individual	User	Accounts.
6.	 Click	OK	to	create	your	web	project.

We	could	have	started	with	an	Empty	template	as	well,	but	then	we	would	have	to	add	a	lot
more	dependencies	and	configuration	just	to	get	things	up	and	running.	Let's	proceed	with
adding	our	basic	controller.

To	add	a	basic	controller,	follow	these	steps:

1.	 In	Solution	Explorer,	right-click	the	Controllers	folder.
2.	 In	the	context	menu,	click	Add	|	New	Item.
3.	 In	the	Add	New	Item	dialog,	select	MVC	Controller	Class	under	.NET	Core	and

ASP.NET.
4.	 Name	your	controller	PatientController	and	click	Add	to	proceed.

The	following	screenshot	shows	the	Add	New	Item	window:

WOW! eBook
www.wowebook.org

At	this	point,	you	should	have	a	basic	controller	with	one	Index()	method	that	returns	a
simple	View.	This	should	already	be	familiar	to	experienced	ASP.NET	MVC	developers.	If	we
run	the	project	now,	the	web	application	should	launch	in	a	web	browser,	using	an	arbitrary
port	number	such	as	12345.	Your	port	number	will	vary.	Your	link	for	your	web	application
will	be	something	like	http://localhost:12345.

With	your	browser	still	open,	you	could	try	to	access	the	PatientController	by	adding	the
controller	name	Patient	to	the	end	of	the	URL:	http://localhost:12345/Patient.

This	should	result	in	an	unhandled	InvalidOperationException,	since	we	haven't	added	an
Index	view	yet	for	the	Patient	controller.	As	with	previous	versions	of	MVC,	this	view
would	typically	be	located	in	a	subfolder	named	Patient,	within	the	Views	folder.	If	it's
missing,	the	fallback	view	would	be	located	in	a	Shared	subfolder	with	the	Views	folder.	The
exception	occurs	when	neither	of	these	conventional	locations	contain	the	expected	view.

To	bypass	the	expected	route,	let's	replace	the	Index	method	of	the	PatientController	class
with	the	following	code:

public	string	Index()	

{	

				return	"Patient	Info";	

}	

Note	that	we've	changed	the	return	type	to	string	so	that	we	can	return	a	string	literal	to	test
WOW! eBook

www.wowebook.org

our	controller.	If	you	run	the	application	again,	you	should	now	be	able	to	see	the	placeholder
text	in	your	web	browser	when	you	access	the	Patient	controller	at
http://localhost:12345/Patient:

WOW! eBook
www.wowebook.org

URL	routes	and	conventions
If	you	take	a	look	at	the	Configure()	method	in	Startup.cs,	you	can	see	the	default	route	for
your	web	application:

app.UseMvc(routes	=>	

{	

				routes.MapRoute(

								name:	"default",	

								template:	"{controller=Home}/{action=Index}/{id?}");	

});	

You	may	recall	from	Chapter	2	,	Building	Your	First	ASP.NET	Core	Application,	that	the
Configure()	method	in	ASP.NET	Core	is	used	for	applying	components	and	services	that	are
added	in	the	ConfigureServices()	method.	As	you	can	see	from	the	sample	code,	the
controller	and	action	values	are	being	defaulted	to	Home	and	Index	respectively.

Optionally,	there	is	an	id	parameter	that	can	be	added	to	the	URL	after	a	trailing	slash.	Note
that	this	is	different	from	adding	an	id	parameter	to	the	QueryString,	but	both	approaches	can
be	used	to	pass	the	value	to	the	controller	method	through	method	parameters.

In	order	to	use	the	Encode()	method,	make	sure	that	you	have	added	the	following	using
statement	to	include	the	WebEncoders	namespace	in	your	code:

using	System.Text.Encodings.Web;	

In	order	to	make	use	of	the	default	convention,	update	the	Index	method	in	the
PatientController	class	as	follows	to	accept	parameters:

public	string	Index(int	id,	string	name	=	"Unknown")	

{	

				return	"Patient	Info:	"	+	HtmlEncoder.Default.Encode(

								"ID:	"	+	id	+	",	"	+	

								"Name:	"	+	name);	

}	

The	id	and	name	parameters	refer	to	a	patient's	ID	and	name,	respectively.	The	name	parameter
is	being	defaulted	to	"Unknown"	in	case	no	name	has	been	specified.	The	passed	values	are
wrapped	around	a	call	to	Encode()	to	ensure	that	no	malicious	tags	or	scripts	are	being
passed	through	the	QueryString.

You	should	now	be	able	to	use	http://localhost:12345/Patient?id=1&name=John	as	the
QueryString	parameters.	The	following	screenshot	is	the	output	for	the	same:

WOW! eBook
www.wowebook.org

saeid
Rectangle

saeid
Pencil

saeid
Highlight

saeid
Rectangle

saeid
Highlight

saeid
Pencil

saeid
Highlight

WOW! eBook
www.wowebook.org

Implementing	views
Views	in	MVC	make	up	the	presentation	layer,	the	user	interface	that	holds	on-screen	elements
for	the	user	to	interact	with.	The	UI	in	any	web	application	can	get	busy	really	quickly,	either
filled	with	too	many	items	at	the	same	time,	or	burdened	with	business	logic	and	unnecessary
code.	The	goal	of	MVC's	separation	of	concerns	aims	to	help	developers	create	well-
architected	applications	where	the	views	are	lightweight	and	validation	is	performed	in	the
model	layer,	which	is	connected	to	the	view	with	binding.

WOW! eBook
www.wowebook.org

saeid
Highlight

Basic	views
Similar	to	how	we	added	a	basic	controller,	we	will	create	a	basic	view	and	gradually	add
code	to	it.	Just	as	you	can	create	a	more	complete	controller	with	scaffolding,	you	can	also
create	a	more	complete	view	attached	to	a	template	and	model.	But	once	again,	we'll	cover
that	later	in	this	chapter.

First,	let's	create	a	subfolder	for	views	that	will	be	used	by	our	Patient	controller,	so	that	we
can	add	our	new	view	to	it.	Follow	the	these	steps:

1.	 In	Solution	Explorer,	right-click	the	Views	folder,	and	add	a	new	folder	to	it.
2.	 Name	the	subfolder	Patient	to	take	advantage	of	naming	conventions.
3.	 Right-click	the	Patient	subfolder,	then	click	Add	|	New	Item.
4.	 In	the	Add	New	Item	dialog,	select	MVC	View	Page	under	ASP.NET .
5.	 Name	your	view	Index.cshtml	and	click	Add	to	proceed.

We	are	using	the	default	view	name	of	Index.cshtml	so	that	this	view	will	be	returned	by	the
Index()	controller	method	in	the	Patient	controller.	At	this	point,	the	view	has	no	actual
content,	just	some	placeholder	symbols	for	comments	and	server-side	code.	The	code	is	as
follows:

@*	server-side	comments	*@	

@{	//	server-side	code	}	

Replace	the	contents	of	the	view	with	the	following	content:

@{	

				ViewData["Title"]	=	"Patient	Index";	

}	

<h2>Patient	Index</h2>	

The	ViewData	value	for	"Title"	is	used	by	the	default	_Layout.cshtml	layout	file,	which	can
be	found	in	the	Shared	subfolder	in	your	Views	folder.	The	following	code	is	for	Patient
controller's	Index	view:

<title>@ViewData["Title"]	-	PatientRecordsWebApp</title>	

Replace	the	Patient	controller's	Index	view	with	the	following	code:

public	IActionResult	Index()	

{	

				return	View();	

}	

To	browse	to	this	page,	run	the	application	and	add	the	Patient	controller	name	to	the	end	of
the	URL	after	a	trailing	slash,	like	http://localhost:12345/Patient.

You	should	see	the	contents	of	the	view	in	your	browser	now,	including	the	title	and	page
WOW! eBook

www.wowebook.org

saeid
Rectangle

saeid
Rectangle

header	text.	This	is	shown	in	the	following	screenshot:

WOW! eBook
www.wowebook.org

Tag	helpers	in	views
To	make	it	easier	to	browse	to	this	page,	let's	update	its	layout	file	to	include	a	link	to	the
controller	method	that	will	return	this	view.	First,	locate	the	set	of	clickable	links	in	the
layout	file,		list	items	within	a		unordered	list.

Note	that	the	<a>	tags	each	have	two	attributes	that	act	as	tag	helpers:

asp-controller

asp-action

Tag	helpers	were	newly	introduced	in	ASP.NET	Core	MVC,	and	are	similar	to	HtmlHelpers
you	may	have	used	in	the	past.	The	values	of	these	two	attributes	will	determine	the	controller
name	and	the	subsequent	action	method	that	will	be	triggered	upon	clicking	the	link.

Let's	add	an	additional	clickable	link	for	the	Patient	controller,	just	after	the	Contact	link,
using	the	following	code:

<a	asp-controller="Patient"	asp-action="Index">Patients	

Run	the	web	application	to	see	the	new	link	in	the	top	header	area,	which	will	allow	you	to
jump	to	the	patient's	index	view	much	more	quickly:

Later	in	this	chapter,	we	will	learn	how	to	use	tag	helpers	in	your	views	for	validation
purposes.	We	will	also	add	specific	attributes	to	our	models	to	help	validate	specific	fields
when	a	form	is	submitted.

WOW! eBook
www.wowebook.org

saeid
Rectangle

saeid
Highlight

saeid
Underline

saeid
Underline

saeid
Rectangle

ViewData,	ViewBag,	and	TempData
You	can	pass	data	from	your	controllers	to	your	views	by	setting	the	values	using	ViewData
items	in	a	controller,	and	then	retrieving	the	values	in	a	view.	These	values	are	stored	as	key-
value	dictionary	items	with	string-based	keys.	ViewBag	is	a	more	dynamic	alternative	to	using
ViewData,	allowing	you	to	use	complex	data	types	without	typecasting.	The	assigned	value
will	be	reset	upon	a	redirect.

The	following	are	two	examples	on	how	to	use	ViewData	and	ViewBag	in	your	controllers:

ViewData["PatientId"]	=	id;	

ViewBag.PatientData	=	"someData";	

TempData	is	a	little	different,	as	it	retains	its	data	during	a	redirect,	which	allows	you	to	pass
data	between	controllers	during	a	redirect	operation.	Its	syntax	is	similar	to	that	of	ViewData
so	it	can	be	used	as	a	dictionary	item	with	the	following	string-based	key:

TempData["UserToken"]	=	userTokenData;	

Let's	add	the	following	Details()	method	in	our	Patient	controller	to	assign	some	values	to
some	ViewData	objects:

public	IActionResult	Details(int	id,	string	name	=	"Unknown")	

{	

				ViewData["PatientId"]	=	id;	

				ViewData["PatientName"]	=	name;		

				return	View();	

}	

Here,	we	are	setting	two	ViewData	values	for	the	patient's	ID	and	name,	respectively.	To
display	the	data	in	a	view,	we	will	add	a	new	Details	view	as	follows:

1.	 In	Solution	Explorer,	expand	the	Views	folder.
2.	 Right-click	the	Patient	subfolder,	then	click	Add	|	New	Item.
3.	 In	the	Add	New	Item	dialog,	select	MVC	View	Page	under	ASP.NET .
4.	 Name	your	view	Details.cshtml	to	proceed.

Replace	the	contents	of	the	Details	view	with	the	following	code:

@{	

				ViewData["Title"]	=	"Patient	Details";	

}	

<h2>Patient	Details</h2>	

	

				ID:	@ViewData["PatientId"]	

				Name:	@ViewData["PatientName"]	

	

In	order	to	provide	an	easy	link	between	the	Index	view	and	the	Details	view,	let's	also

WOW! eBook
www.wowebook.org

saeid
Highlight

saeid
Rectangle

saeid
Rectangle

saeid
Rectangle

update	the	Index	view	located	in	the	Patient	subfolder,	inside	the	Views	folder.

Replace	the	contents	of	the	Patient	controller's	Index	view	with	the	following	code:

@{	

				ViewData["Title"]	=	"Patient	Index";	

}	

<h2>Patient	Index,	with	Tag	Helpers</h2>	

	

	

				@for	(int	i	=	0;	i	<	10;	i++)	

				{	

								<a	asp-controller="Patient"	asp-action="Details"		

															asp-route-id="@i"	asp-route-name="Patient	@i">	

															Patient	#	@i	

				}	

	

	

In	the	preceding	code,	the	for	loop	is	used	to	generate	a	list	of	clickable	links.	Each	link	can
be	clicked	to	show	the	details	for	a	particular	patient.	Once	again,	you	can	see	the	use	of	tag
helpers	as	the	following	attributes	within	the	<a>	tag:

asp-controller

asp-action

asp-route-id

asp-route-name

The	last	two	attributes	are	open-ended	enough	to	reference	named	parameters	such	as	ID	and
name.	The	id	attribute	will	automatically	follow	the	URL	routing	convention,	while	the	name
attribute	will	be	added	as	a	QueryString	parameter.

The	links	will	appear	in	the	following	format:

http://localhost:12345/Patient/Details/0?name=Patient%200

http://localhost:12345/Patient/Details/1?name=Patient%201

http://localhost:12345/Patient/Details/2?name=Patient%202

The	numeric	value	just	before	the	question	mark	is	the	ID	value	as	defined	by	the	URL	route
defined	for	the	application.	Note	that	the	space	in	the	parameter	value	is	URL-encoded	to	a
%20.

Run	the	web	application	and	click	on	the	Patients	link	in	the	top	toolbar	to	navigate	to	the
Patient	index	page.	You	should	see	a	list	of	10	items	in	the	following	screenshot,	each	with
its	own	link.	Click	one	of	the	links	to	go	to	the	Details	page	for	that	particular	patient.	The
details	page	will	display	the	ID	and	name	of	the	selected	patient:

WOW! eBook
www.wowebook.org

saeid
Rectangle

saeid
Rectangle

WOW! eBook
www.wowebook.org

Designing	models	and	ViewModels
Instead	of	passing	around	individual	values	one	by	one	from	controllers	to	views,	you	can	use
a	model	to	store	a	set	of	data.	The	controller	is	responsible	for	updating	the	model,	which	can
be	associated	with	a	view	to	get	its	data.

WOW! eBook
www.wowebook.org

saeid
Highlight

saeid
Highlight

Creating	models
A	model	is	just	a	class	file	with	a	.cs	file	extension.	In	the	Solution	Explorer	panel,	you	can
add	new	model	class	files	to	the	Models	folder.	You	may	have	noticed	that	there	are	choices
available	for	MVC	Controller	class	and	MVC	View	page,	but	none	for	the	Model	class.

To	create	a	model	class,	we	can	select	the	Class	option	when	adding	a	new	item	as	follows:

1.	 In	Solution	Explorer,	right-click	the	Models	folder,	and	click	Add	|	New	Item.
2.	 In	the	Add	New	Item	dialog,	select	Class	under	Code.
3.	 Name	the	file	Human.cs	to	create	a	new	model.
4.	 Verify	that	you	have	an	empty	class	named	Human.

Add	the	following	fields	to	the	Human	class:

public	class	Human	

{	

				public	int	ID	{	get;	set;	}	

				public	string	SocialSecurityNumber	{	get;	set;	}	

				public	DateTime	DateOfBirth	{	get;	set;	}	

				public	string	FirstName	{	get;	set;	}	

				public	string	LastName	{	get;	set;	}	

}	

You	may	have	also	noticed	in	the	following	screenshot	that	there	are	ViewModels	subfolders
within	the	Models	folder.	When	you	bind	a	view	to	a	model,	the	fields	defined	in	the	model
represent	the	UI	elements	and	form	fields	in	the	associated	view.	These	subfolders	are	a	great
place	to	organize	these	models,	whose	names	match	your	controller	names:

WOW! eBook
www.wowebook.org

saeid
Highlight

WOW! eBook
www.wowebook.org

Binding	models	to	views
To	bind	a	view	to	a	model,	the	following	syntax	can	be	seen	inside	a	view's	.cshtml	file:

@model	MyModelName	

The	rest	of	the	view	should	contain	a	server-side	form,	with	form	elements	associated	with
the	model's	fields.	While	it	is	possible	to	have	more	than	one	form	in	a	view,	MVC	views
typically	tend	to	have	one	form	if	multiple	forms	can	be	avoided.	In	any	case,	the	model	used
for	the	view	should	contain	all	the	necessary	fields	to	cover	all	the	forms	in	the	view.

In	previous	versions	of	ASP.NET	MVC,	you	may	have	used	the	following	syntax	for	a	server-
side	form:

@using	(Html.BeginForm("action",	"controller",	FormMethod.Post,	new	{}))	

{	

				@Html.LabelFor(m	=>	m.Field1)	

				@Html.TextBoxFor(m	=>	m.Field1)	

	

				@Html.LabelFor(m	=>	m.Field2)	

				@Html.TextBoxFor(m	=>	m.Field2)	

	

				<input	type='Submit'	value='Submit'	/>	

}	

In	ASP.NET	Core	MVC,	the	following	syntax	has	been	introduced,	to	use	tag	helpers:

<form	asp-controller="controller"	asp-action="action"	method="post">	

				<label	asp-for="Field1"></label>	

				<input	asp-for="Field1"	/>	

				<label	asp-for="Field2"></label>	

				<input	asp-for="Field2"	/>	

				<input	type="submit"	value="Submit"	/>	

</form>	

This	new	approach	makes	the	code	cleaner	and	more	efficient	as	well.	When	the	form	is
submitted,	the	controller	methods	can	accept	a	model's	data	type	as	a	parameter	to	receive	all
its	fields:

[HttpPost]	

public	IActionResult	MyAction(MyModelName	model)	

{	

				return	View(model);	

}	

WOW! eBook
www.wowebook.org

saeid
Rectangle

saeid
Rectangle

saeid
Highlight

saeid
Rectangle

ViewModels	and	mapping
When	you	organize	your	ViewModels	in	their	own	folders,	you	would	typically	bind	each
view	to	a	specific	ViewModel.	But	your	database	design	may	require	you	to	have	entities
defined	in	your	code	as	model	files	that	match	your	database	objects.	You'll	need	to	figure	out
how	to	map	your	database-specific	models	to	your	ViewModels.

There	are	a	couple	of	different	ways	for	you	to	map	your	ViewModels	and	database	entity
models:

When	your	controller	methods	accept	a	ViewModel,	you	could	map	each	field	to	their
corresponding	entity	model	field,	one	by	one
You	could	use	a	library	such	as	AutoMapper,	which	is	available	for	free	on	GitHub/NuGet
and	described	on	http://automapper.org	as	a	convention-based	object-based	mapper

To	dig	deeper	into	entity	models,	we	will	cover	Object-relational	mapping	and	entity
framework	in	Chapter	6	,	Using	Entity	Framework	to	Interact	with	Your	Database	in	Code.

WOW! eBook
www.wowebook.org

http://automapper.org

Bringing	it	all	together
To	bring	it	all	together,	let's	make	use	of	Visual	Studio's	built-in	code	generation	features	to
take	advantage	of	scaffolding	and	binding.	In	this	section,	we	will	cover	field	attributes	that
assist	in	model	validation.

Before	we	wrap	up	this	chapter,	we	will	also	learn	about	the	use	exception	handling	to	catch
errors	in	your	code.

WOW! eBook
www.wowebook.org

saeid
Highlight

Scaffolding,	validation,	and	model	binding
Using	the	PatientRecords	project	we've	built	so	far,	let's	add	a	new	controller	to	it	following
the	following	steps,	to	make	use	of	scaffolding.	Instead	of	clicking	on	Add	Item,	we	will
choose	the	Controller	option:

1.	 In	Solution	Explorer,	right-click	the	Controllers	folder.
2.	 In	the	context	menu,	click	Add	|	Controller.
3.	 Select	the	option	to	add	a	new	MVC	controller	with	views,	using	EF.

You	will	be	prompted	for	additional	information	while	adding	your	controller.	Select/enter
the	following	information:

Model	class:	Human,	from	your	models	namespace
Data	context	class:	ApplicationDbContext
Controller	name:	HumanController

For	all	the	following	checkboxes,	you	may	leave	the	defaults	as	they	are:

Generate	views:	checked	by	default,	used	to	generate	corresponding	views	for	each
action.
Reference	script	libraries:	checked	by	default,	includes	references	to	script	libraries	in
the	client-side	code.
Use	a	layout	page:	checked	by	default,	allows	entry	of	layout	name	or	can	be	left	empty
to	allow	_viewstart.cshtml	to	be	used.	This	page	typically	includes	a	reference	to	the
project's	default	layout	page,	set	to	_Layout	by	default.

You	may	have	noticed	that	the	controller	name	defaults	to	HumenController	with	an	e	in	it.
This	is	because	the	scaffolding	tool	attempts	to	pluralize	entities	in	the	code,	so	it	incorrectly
assumes	that	the	plural	form	of	Human	is	Humen.	To	fix	this,	make	sure	you	rename	it
HumanController	with	an	a	before	you	add	the	controller.

Once	the	scaffolded	controller	is	added,	you	can	check	the	contents	of	your	HumanController
to	verify	that	it	has	auto-generated	some	code	for	you.	It	should	start	with	a	database	context
object,	followed	by	a	constructor	that	makes	use	of	the	context.

The	rest	of	the	class	should	have	a	series	of	action	methods	for	basic	CRUD	operations,	that
is,	operations	used	to	create,	read,	update,	and	delete	entries:

Index:	list	of	Human	objects
Details(id):	details	of	specific	Human	object
Create:	GET/POST	methods	to	display	a	creation	form	and	create	a	new	entity
Edit:	GET/POST	methods	to	display	an	edit	form	and	edit	an	existing	entity
Delete:	GET/POST	methods	to	display	a	confirmation	screen	and	perform	a	delete
operation

WOW! eBook
www.wowebook.org

saeid
Rectangle

saeid
Underline

saeid
Rectangle

Take	a	look	at	the	Views	folder	and	verify	that	there	is	a	Human	subfolder	with	separate	views
for	all	of	the	preceding	action	methods:	create,	delete,	details,	edit,	and	index.	If	you	open	any
of	these	.cshtml	files,	you	will	find	a	reference	to	each	corresponding	model	in	the	first	line
of	each	view.

The	validation	included	in	these	views	use	the	new	tag	helper	syntax.	These	tags	can	be	used
for	validation,	which	we	saw	in	the	preceding	section.	To	build	upon	this,	we	can	edit	the
Human	model	to	include	a	few	attributes	to	aid	in	validation.

The	attributes	you	will	need	are	defined	in	the	DataAnnotations	namespace,	so	you	should
ensure	that	the	following	using	statement	is	added	to	your	Human.cs	file:

using	System.ComponentModel.DataAnnotations;	

Edit	the	Human.cs	file	in	the	Models	directory	to	include	the	following	attributes	for	your
fields:

public	class	Human	

{	

				public	int	ID	{	get;	set;	}	

				[Required]	

				[StringLength(11)]	

				[Display(Name	=	"SSN")]	

				public	string	SocialSecurityNumber	{	get;	set;	}	

				[Display(Name	=	"DOB")]	

				[DataType(DataType.Date)]	

				public	DateTime	DateOfBirth	{	get;	set;	}	

				[Display(Name	=	"First	Name")]	

				public	string	FirstName	{	get;	set;	}	

				[Display(Name	=	"Last	Name")]	

				public	string	LastName	{	get;	set;	}	

}	

The	following	attributes	have	been	used	here:

Required:	indicates	that	this	field	is	required
StringLength(n):	limits	the	field's	value	to	n	characters
Display(Name	="Alt	Name"):	an	alternate	name	to	display	in	the	UI
DataType(DataType.Date):	limits	the	field	to	a	specific	data	type,	for	example,	date

Note

If	you	would	like	to	experiment	with	additional	attributes,	refer	to	the	ASP.NET
documentation	to	look	for	other	validation	attributes	in	this	namespace.

Before	we	launch	the	web	app	again,	let's	add	a	new	link	to	the	Human	controller's	Index	view.
We	can	add	another	clickable	link	to	the	top	menu	defined	in	the	shared	layout	page,
_Layout.cshtml	in	the	Views/Shared	directory:

<a	asp-controller="Human"	asp-action="Index">Humans	

WOW! eBook
www.wowebook.org

saeid
Rectangle

saeid
Highlight

saeid
Highlight

The	preceding	line	can	be	added	right	after	the	Patients	link	we	added	earlier.	If	you	click	on
the	Humans	link	in	the	top	toolbar	at	this	time,	you	will	get	an	error	because	our	database
doesn't	exist	yet.

WOW! eBook
www.wowebook.org

Database	setup	and	data	entry
To	set	up	the	initial	database,	we	will	have	to	run	the	initial	migration	from	a	command
prompt.	The	current	folder	must	be	set	to	the	project's	root	location,	where	Startup.cs
resides.	This	is	the	same	location	where	your	Models,	Views,	and	Controllers	folders	exist.

Once	you	open	a	command	prompt	to	your	folder's	location,	you	may	run	the	following
commands.	Your	DNVM	version	may	vary:

dotnet	restore

dotnet	build

dotnet	ef	migrations	add	Initial

dotnet	ef	database	update

The	preceding	commands	are	responsible	for	the	following:

restore:	restores	packages	for	your	project
build:	compiles	and	builds	your	project
ef	migrations	add	Initial:	creates	an	initial	snapshot	of	your	database	models
ef	database	update:	creates/updates	your	database

Visual	Studio	should	install	the	dotnet	tools	for	you,	so	you	may	refer	to	Chapter	1	,	Getting
Started	with	ASP.NET	Core,for	initial	setup	instructions	if	you	are	missing	anything.	For
deeper	coverage	of	Entity	Framework,	see	Chapter	6	,	Using	Entity	Framework	to	Interact
with	Your	Database	in	Code.

Once	the	commands	are	done	running,	you	should	have	an	initial	version	of	your	database,
with	the	necessary	database	tables	that	match	your	entity	models,	for	example,	a	Human	table.
The	columns	in	the	Human	table	should	match	the	fields	in	the	Human.cs	model	file.

To	view	the	SQL	Server	Object	Explorer	in	Visual	Studio,	select	View	|	SQL	Server	Object
Explorer	from	the	top	menu,	as	shown	in	the	following	screenshot:

WOW! eBook
www.wowebook.org

saeid
Rectangle

saeid
Pencil

Now,	you	are	ready	to	run	the	application	again	and	click	on	the	Humans	link	the	top	toolbar.
This	should	take	you	to	the	Index	view,	showing	you	that	there	are	no	Humans	yet,	as	shown	in
the	following	screenshot:

Click	the	Create	New	link	to	create	a	new	Human	entry.	Clicking	this	link	should	take	you	to
WOW! eBook

www.wowebook.org

the	Create	view	of	the	Human	controller.	Enter	some	values	and	click	the	Create	button,	as
shown	in	the	following	screenshot:

Once	the	new	Human	entry	is	created,	your	submission	will	be	processed	by	the	post-version
of	the	Create	method.	If	you	leave	out	any	required	values	or	enter	the	wrong	number	of
characters,	the	validation	messages	will	automatically	display	in	the	UI.	Once	submitted
correctly,	you	will	be	taken	back	to	the	Index	view,	where	you	should	see	the	new	Human	entry
you	just	created,	as	shown	in	the	following	screenshot:

WOW! eBook
www.wowebook.org

WOW! eBook
www.wowebook.org

Exception	handling
In	ASP.NET	Core	MVC,	exception	handling	has	evolved	and	there	are	new	ways	to	handle
exceptions.	The	use	of	UseDeveloperExceptionPage()	and	UseExceptionHandler()	can	be
seen	in	ASP.NET	web	apps.	To	find	the	location	of	these	method	calls,	look	no	further	than
your	Startup.cs	file.	Inside	the	Configure()	method,	you	may	find	calls	to	the	following
methods:

app.UseDeveloperExceptionPage();	

app.UseExceptionHandler("/Home/Error");	

The	first	method	call	is	relevant	when	you	are	running	the	application	in	development,	so	that
you	can	get	additional	debug	information.	When	in	production,	the	actual	exception	handler
will	be	used	to	redirect	to	the	appropriate	error	page.	The	preceding	code	triggers	the	Home
controller's	Error	action	method	and	subsequently,	its	Error	view.	In	our	sample	application,
there	is	an	Error.cshtml	file	in	the	Shared	folder	that	will	be	used	in	case	of	an	exception	in
production.

In	order	to	simulate	development	and	production	environments,	you	can	change	the	value	of
the	environment	variable	ASPNETCORE_ENVIRONMENT	to	Development	or	Production.	This
change	be	changed	in	your	launchSettings.json	file	or	in	the	Debug	tab	of	your	project's
properties	screen.

As	with	previous	versions	of	ASP.NET,	you	should	use	try/catch	blocks	to	anticipate	various
exceptions	that	may	occur	at	runtime	and	handle	them	appropriately.	In	some	cases,	you	may
have	to	throw	an	exception	in	your	application	code	to	let	the	calling	method	handle	the
exception.

WOW! eBook
www.wowebook.org

saeid
Highlight

saeid
Highlight

saeid
Rectangle

Summary
In	this	chapter,	we've	taken	a	look	at	how	models,	views,	and	controllers	come	together	to
form	a	working	ASP.NET	Core	MVC	web	application.	We	touched	on	database	setup	and
wrapped	up	with	exception	handling.

In	the	next	chapter,	we	will	learn	about	Web	APIs	and	how	you	can	go	beyond	traditional	web
applications	with	ASP.NET.	We	will	take	a	look	at	various	clients	that	can	take	advantage	of	a
Web	API	backend.

WOW! eBook
www.wowebook.org

Chapter	4.		Using	Web	APIs	to	Extend	Your
Application
If	you've	used	the	ASP.NET	Web	API	with	prior	versions	of	ASP.NET,	you	may	recall	that	a
Web	API	controller	typically	inherits	from	the	APIController.	This	has	changed	in	the
ASP.NET	Core,	as	part	of	the	unification	of	MVC	and	the	Web	API.	As	a	result,	each	Web	API
controller	inherits	from	the	Controller	class,	which	is	also	the	base	class	for	each	MVC
controller.

In	this	chapter,	we	will	work	through	a	working	sample	of	a	Web	API	project.	During	this
chapter,	we	will	cover	the	following:

Web	APIs
Web	API	configuration
Web	API	routes
Consuming	Web	API	applications

WOW! eBook
www.wowebook.org

saeid
Highlight

Understanding	a	Web	API
Building	web	applications	can	be	a	rewarding	experience.	The	satisfaction	of	reaching	a
broad	set	of	potential	users	can	trump	the	frustrating	nights	spent	fine-tuning	an	application
and	fixing	bugs.	But	some	mobile	users	demand	a	more	streamlined	experience	that	only	a
native	mobile	app	can	provide.

Mobile	browsers	may	experience	performance	issues	in	low-bandwidth	situations,	where
HTML5	applications	can	only	go	so	far	with	a	heavy	server-side	backend.	Enter	Web	API,
with	its	RESTful	endpoints,	built	with	mobile-friendly	server-side	code.

WOW! eBook
www.wowebook.org

saeid
Line

saeid
Typewritten Text
پاداش دهنده

saeid
Sticky Note
ch4: later dig depper reading

The	case	for	Web	APIs
In	order	to	create	a	piece	of	software,	years	of	wisdom	tell	us	that	we	should	build	software
with	users	in	mind.	Without	use	cases,	its	features	are	literally	useless.	By	designing	features
around	user	stories,	it	makes	sense	to	reveal	public	endpoints	that	relate	directly	to	user
actions.	As	a	result,	you	will	end	up	with	a	leaner	web	application	that	works	for	more	users.

If	you	need	more	convincing,	here's	a	recap	of	features	and	benefits	of	a	Web	API:

It	lets	you	build	modern	lightweight	web	services,	which	are	a	great	choice	for	your
application,	as	long	as	you	don't	need	SOAP
It's	easier	to	work	with	than	any	past	work	you	may	have	done	with	ASP.NET	Windows
Communication	Foundation	(WCF)	services
It	supports	RESTful	endpoints
It's	great	for	a	variety	of	clients,	both	mobile	and	web
It's	unified	with	ASP.NET	MVC	and	can	be	included	with/without	your	web	application

WOW! eBook
www.wowebook.org

saeid
Rectangle

Creating	a	new	Web	API	project	from	scratch
Let's	build	a	sample	web	application	named	Patient	Records.	In	this	application,	we	will	create
a	Web	API	from	scratch	to	allow	the	following	tasks:

Adding	a	new	patient
Editing	an	existing	patient
Deleting	an	existing	patient
Viewing	a	specific	patient	or	a	list	of	patients

These	four	actions	make	up	the	so-called	CRUD	operations	of	our	system:	to	Create,	Read,
Update,	or	Delete	patient	records.

Following	the	steps	below,	we	will	create	a	new	project	in	Visual	Studio	2015:

1.	 Create	a	new	Web	API	project.
2.	 Add	an	API	controller.
3.	 Add	methods	for	CRUD	operations.

The	preceding	steps	have	been	expanded	into	detailed	instructions	with	the	following
screenshots:

1.	 In	Visual	Studio	2015,	click	File	|	New	|	Project.	You	can	also	press	Ctrl	+	Shift	+	N	on
your	keyboard.

2.	 On	the	left	panel,	locate	the	Web	node	below	Visual	C#,	then	select	ASP.NET	Core	Web
Application	(.NET	Core),	as	shown	in	the	following	screenshot:

WOW! eBook
www.wowebook.org

saeid
Rectangle

saeid
Highlight

3.	 With	this	project	template	selected,	type	in	a	name	for	your	project,	for	example
PatientRecordsApi,	and	choose	a	location	on	your	computer,	as	shown	in	the	following
screenshot:

4.	 Optionally,	you	may	select	the	checkboxes	on	the	lower	right	to	create	a	directory	for

WOW! eBook
www.wowebook.org

your	solution	file	and/or	add	your	new	project	to	the	source	control.	Click	OK	to
proceed.

5.	 In	the	dialog	that	follows,	select	Empty	from	the	list	of	the	ASP.NET	Core	Templates,
then	click	OK,	as	shown	in	the	following	screenshot:

6.	 Optionally,	you	can	check	the	checkbox	for	Microsoft	Azure	to	host	your	project	in	the
cloud.	Click	OK	to	proceed.

WOW! eBook
www.wowebook.org

Building	your	Web	API	project
In	the	Solution	Explorer,	you	may	observe	that	your	References	are	being	restored.	This
occurs	every	time	you	create	a	new	project	or	add	new	references	to	your	project	that	have	to
be	restored	through	NuGet,	as	shown	in	the	following	screenshot:

Follow	these	steps,	to	fix	your	references,	and	build	your	Web	API	project:

1.	 Right	click	on	your	project,	and	click	Add	|	New	Folder	to	add	a	new	folder,	as	shown	in
the	following	screenshot:

WOW! eBook
www.wowebook.org

2.	 Perform	the	preceding	step	three	times	to	create	new	folders	for	your	Controllers,
Models,	and	Views,	as	shown	in	the	following	screenshot:

WOW! eBook
www.wowebook.org

3.	 Right	click	on	your	Controllers	folder,	then	click	Add	|	New	Item	to	create	a	new	API
controller	for	patient	records	on	your	system,	as	shown	in	the	following	screenshot:

4.	 In	the	dialog	box	that	appears,	choose	Web	API	Controller	Class	from	the	list	of
options	under	.NET	Core,	as	shown	in	the	following	screenshot:

WOW! eBook
www.wowebook.org

5.	 Name	your	new	API	controller,	for	example	PatientController.cs,	then	click	Add	to
proceed.

6.	 In	your	new	PatientController,	you	will	most	likely	have	several	areas	highlighted
with	red	squiggly	lines	due	to	a	lack	of	necessary	dependencies,	as	shown	in	the
following	screenshot.	As	a	result,	you	won't	be	able	to	build	your	project/solution	at	this
time:

WOW! eBook
www.wowebook.org

In	the	next	section,	we	will	learn	about	how	to	configure	your	Web	API	so	that	it	has	the
proper	references	and	dependencies	in	its	configuration	files.

WOW! eBook
www.wowebook.org

Configuring	the	Web	API	in	your	web
application
How	does	the	web	server	know	what	to	send	to	the	browser	when	a	specific	URL	is	requested?
The	answer	lies	in	the	configuration	of	your	Web	API	project.

WOW! eBook
www.wowebook.org

saeid
Highlight

Setting	up	dependencies
In	this	section,	we	will	learn	how	to	set	up	your	dependencies	automatically	using	the	IDE,	or
manually	by	editing	your	project's	configuration	file:

1.	 To	pull	in	the	necessary	dependencies,	you	may	right-click	on	the	using	statement	for
Microsoft.AspNet.Mvc	and	select	Quick	Actions	and	Refactorings....	This	can	also	be
triggered	by	pressing	Ctrl	+	.	(period)	on	your	keyboard	or	simply	by	hovering	over	the
underlined	term,	as	shown	in	the	following	screenshot:

2.	 Visual	Studio	should	offer	you	several	possible	options,	from	which	you	can	select	the
one	that	adds	the	package	Microsoft.AspNetCore.Mvc.Core	for	the	namespace
Microsoft.AspNetCore.Mvc.	For	the	Controller	class,	add	a	reference	for	the
Microsoft.AspNetCore.Mvc.ViewFeatures	package,	as	shown	in	the	following
screenshot:

Adding	the	Microsoft.AspNetCore.Mvc.Core	1.0.0	package

3.	 If	you	select	the	latest	version	that's	available,	this	should	update	your	references	and
remove	the	red	squiggly	lines,	as	shown	in	the	following	screenshot:

WOW! eBook
www.wowebook.org

Updating	your	references	and	removing	the	red	squiggly	lines

4.	 The	preceding	step	should	automatically	update	your	project.json	file	with	the	correct
dependencies	for	the	Microsoft.AspNetCore.Mvc.Core,	and
Microsoft.AspNetCore.Mvc.ViewFeatures,	as	shown	in	the	following	screenshot:

5.	 The	"frameworks"	section	of	the	project.json	file	identifies	the	type	and	version	of	the
.NET	Framework	that	your	web	app	is	using,	for	example	netcoreapp1.0	for	the	1.0
version	of	.NET	Core.	You	will	see	something	similar	in	your	project,	as	shown	in	the
following	screenshot:

WOW! eBook
www.wowebook.org

6.	 Click	the	Build	Solution	button	from	the	top	menu/toolbar.	Depending	on	how	you	have
your	shortcuts	set	up,	you	may	press	Ctrl	+	Shift	+	B	or	press	F6	on	your	keyboard	to
build	the	solution.	You	should	now	be	able	to	build	your	project/solution	without	errors,
as	shown	in	the	following	screenshot:

Before	running	the	Web	API	project,	open	the	Startup.cs	class	file,	and	replace	the
app.Run()	statement/block	(along	with	its	contents)	with	a	call	to	app.UseMvc()	in	the
Configure()	method.	To	add	the	Mvc	to	the	project,	add	a	call	to	the	services.AddMvcCore()
in	the	ConfigureServices()	method.	To	allow	this	code	to	compile,	add	a	reference	to
Microsoft.AspNetCore.Mvc.

WOW! eBook
www.wowebook.org

saeid
Highlight

Parts	of	a	Web	API	project
Let's	take	a	closer	look	at	the	PatientController	class.	The	auto-generated	class	has	the
following	methods:

public	IEnumerable<string>	Get()

public	string	Get(int	id)

public	void	Post([FromBody]string	value)

public	void	Put(int	id,	[FromBody]string	value)

public	void	Delete(int	id)

The	Get()	method	simply	returns	a	JSON	object	as	an	enumerable	string	of	values,	while	the
Get(int	id)	method	is	an	overridden	variant	that	gets	a	particular	value	for	a	specified	ID.

The	Post()	and	Put()	methods	can	be	used	for	creating	and	updating	entities.	Note	that	the
Put()	method	takes	in	an	ID	value	as	the	first	parameter	so	that	it	knows	which	entity	to
update.

Finally,	we	have	the	Delete()	method,	which	can	be	used	to	delete	an	entity	using	the
specified	ID.

These	operations	will	work	best	with	an	Object-Relational	Mapping	(ORM)	framework	such
as	an	Entity	Framework,	which	we	will	cover	in	Chapter	6,	Using	Entity	Framework	to
Interact	with	Your	Database	in	Code	.	In	the	meantime,	we	will	create	placeholder	objects	and
values	in	the	API	controller	code.

WOW! eBook
www.wowebook.org

saeid
Rectangle

saeid
Highlight

saeid
Highlight

saeid
Highlight

saeid
Highlight

Running	the	Web	API	project
You	may	run	the	Web	API	project	in	a	web	browser	that	can	display	JSON	data.

If	you	use	Google	Chrome,	I	would	suggest	using	the	JSONView	Extension	(or	other	similar
extension)	to	properly	display	JSON	data.

The	aforementioned	extension	is	also	available	on	GitHub	at	the	following	URL:

https://github.com/gildas-lormeau/JSONView-for-Chrome

If	you	use	Microsoft	Edge,	you	can	view	the	raw	JSON	data	directly	in	the	browser.	Once
your	browser	is	ready,	you	can	select	your	browser	of	choice	from	the	top	toolbar	of	Visual
Studio.	Click	on	the	tiny	triangle	icon	next	to	the	Debug	button,	then	select	a	browser,	as
shown	in	the	following	screenshot:

In	the	preceding	screenshot,	you	can	see	that	multiple	installed	browsers	are	available,
including	Firefox,	Google	Chrome,	Internet	Explorer,	and	Edge.	To	choose	a	different
browser,	simply	click	on	Browse	With...,	in	the	menu	to	select	a	different	one.

Now,	click	the	Debug	button	(that	is	the	green	play	button)	to	see	the	Web	API	project	in
action	in	your	web	browser,	as	shown	in	the	following	screenshot.	If	you	don't	have	a	web
application	set	up,	you	won't	be	able	to	browse	the	site	from	the	root	URL:

WOW! eBook
www.wowebook.org

https://github.com/gildas-lormeau/JSONView-for-Chrome

Don't	worry	if	you	see	this	error,	you	can	update	the	URL	to	include	a	path	to	your	API
controller;	for	an	example,	see	http://localhost:12345/api/Patient.

Note	that	your	port	number	may	vary.	Now,	you	should	be	able	to	see	a	list	of	views	that	are
being	spat	out	by	your	API	controller,	as	shown	in	the	following	screenshot:

WOW! eBook
www.wowebook.org

Adding	routes	to	handle	anticipated	URL	paths
Back	in	the	days	of	classic	ASP,	application	URL	paths	typically	reflected	physical	file	paths.
This	continued	with	ASP.NET	web	forms,	even	though	the	concept	of	custom	URL	routing
was	introduced.	With	ASP.NET	MVC,	routes	were	designed	to	cater	to	functionality	rather
than	physical	paths.

ASP.NET	Web	API	continues	this	newer	tradition,	with	the	ability	to	set	up	custom	routes	from
within	your	code.	You	can	create	routes	for	your	application	using	fluent	configuration	in
your	startup	code	or	with	declarative	attributes	surrounded	by	square	brackets.

WOW! eBook
www.wowebook.org

Understanding	routes
To	understand	the	purpose	of	having	routes,	let's	focus	on	the	features	and	benefits	of	routes
in	your	application.	This	applies	to	both	the	ASP.NET	MVC	and	ASP.NET	Web	API:

By	defining	routes,	you	can	introduce	predictable	patterns	for	URL	access
This	gives	you	more	control	over	how	URLs	are	mapped	to	your	controllers
Human-readable	route	paths	are	also	SEO-friendly,	which	is	great	for	Search	Engine
Optimization
It	provides	some	level	of	obscurity	when	it	comes	to	revealing	the	underlying	web
technology	and	physical	file	names	in	your	system

WOW! eBook
www.wowebook.org

saeid
Pencil

saeid
Typewritten Text
قابل پیش بینی

saeid
Highlight

saeid
Rectangle

Setting	up	routes
Let's	start	with	this	simple	class-level	attribute	that	specifies	a	route	for	your	API	controller,
as	follows:

[Route("api/[controller]")]	

public	class	PatientController	:	Controller	

{	

		//	...	

}	

Here,	we	can	dissect	the	attribute	(seen	in	square	brackets,	used	to	affect	the	class	below	it)
and	its	parameter	to	understand	what's	going	on:

The	Route	attribute	indicates	that	we	are	going	to	define	a	route	for	this	controller.
Within	the	parentheses	that	follow,	the	route	path	is	defined	in	double	quotes.
The	first	part	of	this	path	is	the	string	literal	api/,	which	declares	that	the	path	to	an	API
method	call	will	begin	with	the	term	api	followed	by	a	forward	slash.
The	rest	of	the	path	is	the	word	controller	in	square	brackets,	which	refers	to	the
controller	name.	By	convention,	the	controller's	name	is	part	of	the	controller's	class
name	that	precedes	the	term	Controller.	For	a	class	PatientController,	the	controller
name	is	just	the	word	Patient.
This	means	that	all	API	methods	for	this	controller	can	be	accessed	using	the	following
syntax,	where	MyApplicationServer	should	be	replaced	with	your	own	server	or	domain
name:	http://MyApplicationServer/api/Patient

For	method	calls,	you	can	define	a	route	with	or	without	parameters.	The	following	example
illustrates	both	types	of	route	definitions:

[HttpGet]	

public	IEnumerable<string>	Get()	

{	

				return	new	string[]	{	"value1",	"value2"	};	

}	

In	this	example,	the	Get()	method	performs	an	action	related	to	the	HTTP	verb	HttpGet,
which	is	declared	in	the	attribute	directly	above	the	method.	This	identifies	the	default	method
for	accessing	the	controller	through	a	browser	without	any	parameters,	which	means	that	this
API	method	can	be	accessed	using	the	following	syntax:

http://MyApplicationServer/api/Patient	

To	include	parameters,	we	can	use	the	following	syntax:

[HttpGet("{id}")]	

public	string	Get(int	id)	

{	

				return	"value";	

}	

WOW! eBook
www.wowebook.org

saeid
Pencil

saeid
Rectangle

saeid
Highlight

saeid
Highlight

saeid
Highlight

saeid
Rectangle

saeid
Pencil

saeid
Highlight

saeid
Pencil

saeid
Pencil

saeid
Rectangle

saeid
Pencil

Here,	the	HttpGet	attribute	is	coupled	with	an	"{id}"	parameter,	enclosed	in	curly	braces
within	double	quotes.	The	overridden	version	of	the	Get()	method	also	includes	an	integer
value	named	id	to	correspond	with	the	expected	parameter.

If	no	parameter	is	specified,	the	value	of	id	is	equal	to	default(int)	which	is	zero.	This	can
be	called	without	any	parameters	with	the	following	syntax:

http://MyApplicationServer/api/Patient/Get	

In	order	to	pass	parameters,	you	can	add	any	integer	value	right	after	the	controller	name,
with	the	following	syntax:

http://MyApplicationServer/api/Patient/1	

This	will	assign	the	number	1	to	the	integer	variable	id.

WOW! eBook
www.wowebook.org

saeid
Rectangle

saeid
Rectangle

Testing	routes
To	test	the	aforementioned	routes,	simply	run	the	application	from	Visual	Studio	and	access
the	specified	URLs	without	parameters.

The	preceding	screenshot	show	the	results	of	accessing	the	following	path:

http://MyApplicationServer/api/Patient/1	

WOW! eBook
www.wowebook.org

Consuming	a	Web	API	from	a	client	application
If	a	Web	API	exposes	public	endpoints,	but	there	is	no	client	application	there	to	consume	it,
does	it	really	exist?	Without	getting	too	philosophical,	let's	go	over	the	possible	ways	you	can
consume	a	client	application.

You	can	do	any	of	the	following:

Consume	the	Web	API	using	external	tools
Consume	the	Web	API	with	a	mobile	app
Consume	the	Web	API	with	a	web	client

WOW! eBook
www.wowebook.org

saeid
Highlight

Testing	with	external	tools
If	you	don't	have	a	client	application	set	up,	you	can	use	an	external	tool	such	as	Fiddler.
Fiddler	is	a	free	tool	that	is	now	available	from	Telerik,	at
http://www.telerik.com/download/fiddler	,	as	shown	in	the	following	screenshot:

You	can	use	Fiddler	to	inspect	URLs	that	are	being	retrieved	and	submitted	on	your	machine.
You	can	also	use	it	to	trigger	any	URL,	and	change	the	request	type	(Get,	Post,	and	others).

WOW! eBook
www.wowebook.org

http://www.telerik.com/download/fiddler

Consuming	a	Web	API	from	a	mobile	app
Since	this	chapter	is	primarily	about	the	ASP.NET	core	Web	API,	we	won't	go	into	detail
about	mobile	application	development.	However,	it's	important	to	note	that	a	Web	API	can
provide	a	backend	for	your	mobile	app	projects.

Mobile	apps	may	include	Windows	Mobile	apps,	iOS	apps,	Android	apps,	and	any	modern
app	that	you	can	build	for	today's	smartphones	and	tablets.	You	may	consult	the
documentation	for	your	particular	platform	of	choice,	to	determine	what	is	needed	to	call	a
RESTful	API.

WOW! eBook
www.wowebook.org

saeid
Highlight

Consuming	a	Web	API	from	a	web	client
A	web	client,	in	this	case,	refers	to	any	HTML/JavaScript	application	that	has	the	ability	to	call
a	RESTful	API.	At	the	very	least,	you	can	build	a	complete	client-side	solution	with	straight
JavaScript	to	perform	the	necessary	actions.	For	a	better	experience,	you	may	use	jQuery	and
also	one	of	many	popular	JavaScript	frameworks.

A	web	client	can	also	be	a	part	of	a	larger	ASP.NET	MVC	application	or	a	Single-Page
Application	(SPA).	As	long	as	your	application	is	spitting	out	JavaScript	that	is	contained	in
HTML	pages,	you	can	build	a	frontend	that	works	with	your	backend	Web	API.

WOW! eBook
www.wowebook.org

saeid
Highlight

Summary
In	this	chapter,	we've	taken	a	look	at	the	basic	structure	of	an	ASP.NET	Web	API	project,	and
observed	the	unification	of	a	Web	API	with	MVC	in	an	ASP.NET	core.	We	also	learned	how	to
use	a	Web	API	as	our	backend	to	provide	support	for	various	frontend	applications.

In	the	next	chapter,	we	will	learn	more	about	developing	an	interactive	frontend	UI	with
HTML5,	JavaScript,	and	CSS3.	We	will	focus	on	using	JavaScript	to	consume	a	Web	API,
while	getting	an	introduction	to	client-side	tools,	such	as	Bower,	Grunt,	and	Gulp.

WOW! eBook
www.wowebook.org

Chapter	5.		Interacting	with	Web	API	using
JavaScript
A	browser-based	web	application	wouldn't	be	complete	without	client-side	code	to
complement	the	server-side	code.	Regardless	of	the	technology	and	language	used	on	the	web
server,	all	web	application	developers	should	learn	how	to	use	JavaScript	with	their	HTML	on
the	client.

In	this	chapter,	we	will	start	off	by	building	an	HTML	page	filled	with	JavaScript	code	to
develop	an	interactive	user	interface.	We	will	cover	the	following	topics:

Working	with	ASP.NET	Web	API	using	JavaScript
JavaScript	frameworks
Client-side	tools	such	as	Bower,	Grunt,	and	Gulp

WOW! eBook
www.wowebook.org

saeid
Highlight

Using	JavaScript	to	interact	with	Web	API
There	have	been	a	lot	of	JavaScript	frameworks	fighting	for	the	affections	of	web	developers
worldwide,	and	a	few	of	them	have	caught	on.	In	the	next	few	sections,	we	will	learn
about	AngularJS	and	KnockoutJS.	But	first,	let's	focus	on	using	some	basic	JavaScript	to
read	and	write	data	to/from	your	Web	API.

The	example	for	this	section	will	use	the	following	files:

HTML	file	with	client-side	JavaScript	to	use	the	Web	API
Server-side	controller	class
Server-side	model	class

The	following	screenshot	shows	the	preceding	three	files	that	we	need:

WOW! eBook
www.wowebook.org

saeid
Rectangle

saeid
Pencil

We	will	be	dealing	with	these	files	in	the	example	in	this	chapter:

The	static	HTML	file	is	in	the	wwwroot	location	of	the	web	application
The	controller	is	in	the	Controllers	folder	(by	convention)
The	patient	model	is	in	the	Models	folder	(by	convention)

To	visualize	what	the	application	looks	like,	see	the	following	screenshot	of	the	Patient
Records	App:

WOW! eBook
www.wowebook.org

Preparing	the	server-side	code
Create	a	new	class	file	in	the	Models	folder	and	call	it	Patient.cs	with	the	following	code:

public	class	Patient	

{	

				public	int	Id	{	get;	set;	}	

				public	string	LastName	{	get;	set;	}	

				public	string	FirstName	{	get;	set;	}	

				public	string	SocialSecurityNumber	{	get;	set;	}	

}	

The	preceding	code	gives	us	just	the	right	amount	of	controller	and	model	code	to	get	started
on	the	client-side	JavaScript.

The	following	API	controller	has	at	least	two	controller	methods	to	return	a	list	of	patients	or
just	one	patient	when	given	a	patient	ID.	This	controller	should	have	a	using	statement	to
reference	the	models	namespace.

It	begins	with	a	class-level	[Route]	attribute	to	indicate	how	the	API	controller	will	be
accessed	from	a	web	browser's	GET	request	or	through	JavaScript	code	in	the	browser,	as
shown	in	the	following	code:

[Route("api/[controller]")]	

public	class	PatientController	:	Controller	

Inside	the	class	itself,	there	is	a	class-level	instance	variable	that	holds	a	data	structure	to
define	an	array	of	patients	with	a	few	sample	values,	as	shown	in	the	following	code.	In	a	real-
world	application,	this	data	would	typically	come	from	a	database:

				Patient[]	patients	=	new	Patient[]	

				{	

								new	Patient	

								{	

												Id	=	1,	

												FirstName	=	"John",	

												LastName	=	"Smith",	

												SocialSecurityNumber	=	"123550001"	

								},	

								new	Patient	

								{	

												Id	=	2,	

												FirstName	=	"Jane",	

												LastName	=	"Doe",	

												SocialSecurityNumber	=	"123550002"	

								},	

								new	Patient	

								{	

												Id	=	3,	

												FirstName	=	"Lisa",	

												LastName	=	"Smith",	

												SocialSecurityNumber	=	"123550003"	

WOW! eBook
www.wowebook.org

saeid
Rectangle

saeid
Pencil

saeid
Rectangle

saeid
Highlight

saeid
Highlight

saeid
Rectangle

								}	

				};	

Next,	we	have	a	simple	Get()	method	to	return	an	enumerable	list	of	patient	objects:

				//	GET:	api/patient	

				[HttpGet]	

				public	IEnumerable<Patient>	Get()	

				{	

								return	patients;	

				}	

Finally,	we	have	a	simple	Get(id)	method	to	return	a	specific	patient	when	a	numeric	ID	value
is	provided	to	perform	a	lookup:

				//	GET	api/patient/5	

				[HttpGet("{id}")]	

				public	Patient	Get(int	id)	

				{	

								var	patient	=	patients.FirstOrDefault((p)	=>	p.Id	==	id);	

								if	(patient	==	null)	

								{	

												return	null;	

								}	

								return	patient;	

				}	

}	

WOW! eBook
www.wowebook.org

saeid
Rectangle

saeid
Rectangle

Client-side	JavaScript
The	following	HTML/JavaScript	code	can	be	included	in	a	sample	HTML	file	to	obtain	and
display	patient	records.	It	starts	off	with	a	typical	HTML	opening:

<!DOCTYPE	html>	

<html>	

<head>	

				<title>Patient	Records	App</title>	

</head>	

The	body	contains	a	header	and	a	<div>	to	display	the	data:

<body>	

	

<div>	

				<h2>Patient	Records</h2>	

				<ul	id="patients">	

</div>	

<div>	

				<h2>Find	Patient	By	ID</h2>	

				<input	type="text"	id="patientId"	size="5"	/>	

				<input	type="button"	value="Search"	onclick="find();"	/>	

				<p	id="patient"	/>	

</div>	

Note	the	following:

An	empty	list	is	defined	with	an	ID	of	patients	to	display	a	list	of	patient	records	when
the	page	first	loads
A	search	textbox	is	defined	with	an	ID	of	patientId	to	allow	the	user	to	search	by	ID
The	Search	button	has	an	onclick	event,	which	calls	a	find()	method
An	empty	paragraph	is	defined	with	an	ID	of	patient	to	display	the	results	of	a	call	to	the
find()	method

Next	is	a	reference	to	jQuery,	which	can	be	a	specific	(or	the	latest)	version,	as	needed:

<script	src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-2.0.3.min.js"></script>		

Then,	we	begin	the	main	<script>	to	define	functions	to	handle	API	calls:

<script>	

At	the	beginning	of	the	script,	let's	define	a	variable	to	hold	the	URI	path	for	the	API	call:

var	uri	=	'api/Patient';	

Next,	let's	ensure	that	the	patient	list	is	populated	immediately	after	the	page	loads:

$(document).ready(function	()	{	

				$.getJSON(uri)	

								.done(function	(data)	{	

WOW! eBook
www.wowebook.org

saeid
Highlight

saeid
Rectangle

saeid
Highlight

saeid
Rectangle

saeid
Line

saeid
Pencil

saeid
Pencil

												$.each(data,	function	(key,	patient)	{	

																$('',	{	

																				text:	formatPatientInfo(patient)	

																}).appendTo($('#patients'));	

												});	

								});	

});	

The	preceding	code	has	a	reference	to	a	function	named	formatPatientInfo()	to	format	the
patient	information	returned	by	the	API	call.	This	method	is	defined	as	follows:

function	formatPatientInfo(patient)	{	

				if	(patient	&&	patient.lastName)	

								return	patient.lastName	+	

												',	'	+	patient.firstName	+	

												':	'	+	patient.socialSecurityNumber;	

				else	

								return	'No	patient	information	found.';	

}	

To	enable	search	functionality,	a	find()	method	is	defined	as	follows:

function	find()	{	

				var	id	=	$('#patientId').val();	

				$.getJSON(uri	+	'/'	+	id)	

								.done(function	(data)	{	

												$('#patient').text(formatPatientInfo(data));	

								})	

								.fail(function	(jqXHR,	textStatus,	err)	{	

												$('#patient').text('Error:	'	+	err);	

								});	

}	

Here,	an	id	variable	is	defined	to	obtain	the	numeric	ID	value	from	the	search	box	provided
to	the	end	user.	This	ID	is	then	appended	to	the	end	of	the	previously	defined	URI	to	form	a
URL	used	to	call	getJSON().

Once	the	API	call	has	been	triggered,	JavaScript	handles	successful	and	failed	calls	with	.done
and	.fail	blocks,	respectively.	The	.done	block	updates.

At	this	point,	we	can	close	out	the	<script>,	<body>,	and	<html>	tags:

</script>	

</body>	

</html>	

To	verify	that	you	can	display	static	files	in	your	web	app,	perform	the	following	steps:

1.	 Verify	that	Main()	includes	.UseContentRoot(Directory.GetCurrentDirectory())	in
Program.cs.

2.	 Add	a	reference	to	Microsoft.AspNetCore.StaticFiles(1.0.0).
3.	 Add	app.UseStaticFiles()	to	Startup.cs.

WOW! eBook
www.wowebook.org

saeid
Rectangle

saeid
Pencil

saeid
Rectangle

saeid
Rectangle

saeid
Rectangle

saeid
Pencil

saeid
Highlight

saeid
Highlight

saeid
Pencil

saeid
Pencil

saeid
Highlight

The	following	screenshot	shows	the	results	displayed	when	the	user	searches	for	a	patient
with	an	ID	of	1:

WOW! eBook
www.wowebook.org

JavaScript	frameworks
When	you	start	adding	more	and	more	JavaScript	to	your	code,	your	web	application	can	get
unwieldy	and	difficult	to	maintain.	To	take	advantage	of	providing	JavaScript	frameworks,
you	may	choose	from	many	JavaScript	frameworks.

These	are	four	popular	frameworks:

AngularJS:	https://angularjs.org
KnockoutJS:	http://knockoutjs.com
BackboneJS:	http://backbonejs.org
EmberJS:	http://emberjs.com

In	this	chapter,	we	will	focus	on	AngularJS	and	KnockoutJS.

WOW! eBook
www.wowebook.org

https://angularjs.org
http://knockoutjs.com
http://backbonejs.org
http://emberjs.com

Single-page	applications	with	AngularJS
The	official	ASP.NET	documentation	mentions	AngularJS	as	an	option	for	building	a	SPA-
style	ASP.NET	application.	The	examples	in	this	chapter	are	derived	from	Microsoft's
documentation	at:		http://docs.asp.net/en/latest/client-side/angular.html	.

WOW! eBook
www.wowebook.org

http://docs.asp.net/en/latest/client-side/angular.html

Getting	started	with	AngularJS
AngularJS	is	an	open	source	JavaScript	framework,	which	is	officially	maintained	by
Google.	At	the	time	of	writing,	the	latest	stable	release	is	at	version	1.5.x,	and	version	2.0	is
going	through	a	few	release	candidate	(RC)	stages	as	of	July	2016.

AngularJS	uses	a	subset	of	jQuery	called	jqLite,	which	allows	it	to	manipulate	the	DOM	of	an
HTML	page	across	multiple	browsers.	If	you	want	to	use	jQuery	in	your	AngularJS
application,	you	must	ensure	that	jQuery	is	loaded	before	the	angular.js	file.

The	easiest	way	to	set	up	AngularJS	to	your	web	application	in	Visual	Studio	2015	is	to	update
your	bower.json	file	in	a	new	web	application.	Launch	Visual	Studio	2015,	click	on	File	|	New
|	Project,	and	then	create	a	new	Web	Application	using	the	new	ASP.NET	Template	(not	the
empty	one).

This	should	automatically	create	a	bower.json	configuration	file	for	you.	You	may	have	to
click	on	the	Show	All	Files	icon	in	the	Solution	Explorer	to	view	the	bower.json	file.
Simply	edit	this	JSON	file	and	add	two	entries	for	"angular"	and	"angular-route"	under
"dependencies".	Use	IntelliSense	to	help	you	decide	which	version	numbers	to	use,	as	shown
in	the	following	screenshot:

The	bower.json	file

The	angular-route	module	enables	your	web	app	to	use	routing	and	deeplinking	services,	as

WOW! eBook
www.wowebook.org

saeid
Highlight

saeid
Highlight

saeid
Highlight

saeid
Highlight

saeid
Highlight

well	as	directives.	These	terms	(and	more)	are	explained	in	the	following	section.

Almost	immediately	after	you	add	the	two	entries,	the	necessary	JavaScript	files	will	be	added
to	your	Bower	folder	under	/Dependencies/Bower/,	as	shown	in	the	following	screenshot.	You
can	configure	Grunt	or	Gulp	to	always	copy	the	necessary	files	to	the	lib	subfolder	within
the	wwwroot	web	root	location.

Angular	(1.5.8)	and	Angular	route	(1.5.8)

The	following	screenshot	shows	how	your	lib	folder	should	look	after	the	necessary
modules	are	placed	into	it:

WOW! eBook
www.wowebook.org

saeid
Highlight

In	the	last	section	of	this	chapter,	we	will	learn	more	about	using	Bower	to	manage	your
packages	for	your	client-side	code.

WOW! eBook
www.wowebook.org

saeid
Highlight

AngularJS	syntax	and	features
AngularJS	can	be	explained	by	illustrating	its	syntax	and	features	with	a	few	examples.
AngularJS	syntax	in	an	HTML	file	can	be	easily	identified	by	recognizing	the	following:

Directives	that	appear	within	HTML	tags,	such	as	ng-app	and	ng-init
Expressions	that	appear	in	double	curly	braces,	such	as	{{1+2}}
Data	binding	with	ng-bind,	such	as	
Repeaters	to	enumerate	data,	such	as	<li	ng-repeat="patient	in	patients">
Event	handlers	to	handle	user	input,	such	as	<button	ng-click="handleClick()">
All	of	the	preceding	can	be	contained	in	HTML	files	that	are	known	as	templates.

Within	JavaScript	code	files,	you	may	recognize	some	of	the	following	syntax:

App	modules	defined	with	angular.module()
Model	factories	defined	with	.factory()
Services	defined	with	.service()
Controllers	defined	with	.controller()

This	is	not	an	exhaustive	list,	and	this	chapter	is	not	meant	to	be	a	substitute	for	AngularJS
documentation	or	tutorials.	To	learn	more	about	AngularJS,	read	through	the	official
documentation	at	https://docs.angularjs.org	.

WOW! eBook
www.wowebook.org

https://docs.angularjs.org
saeid
Rectangle

saeid
Rectangle

Building	a	web	application	with	AngularJS
Once	you	have	your	dependencies	set	up	in	your	project,	add	a	script	reference	to	AngularJS
in	your	HTML	code.	This	can	be	added	in	the	following	ways:

In	your	_Layout.cshtml	file	under	/Views/Shared
In	a	static	HTML	page,	just	before	the	closing	</body>	tag

The	layout	file	has	different	sections	for	Development	and	Staging/Production.	While	you
may	use	a	local	reference	for	development,	you	should	use	a	shared	URL	from	a	Content
Delivery	Network	(CDN)	for	staging	and	production	as	follows:

<environment	names="Development">	

				<script	src="~/lib/jquery/dist/jquery.js"></script>	

				<script	src="~/lib/bootstrap/dist/js/bootstrap.js"></script>	

</environment>	

For	staging	and	production,	common	CDN	servers	used	for	AngularJS	include	Google's
CDN	at	ajax.googleapis.com	or	Microsoft's	AJAX	CDN	at	ajax.aspnetcdn.com.

A	static	HTML	file	is	much	simpler,	as	it	just	refers	to	your	local	file.	You	may	also	use
IntelliSense	to	type	out	the	path	to	your	angular.js	file,	as	Visual	Studio	will	locate	the	file
on	your	system	while	you	type.	The	following	code	does	this:

				<script	src="../lib/angular/angular.js"></script>	

</body>	

</html>	

The	following	static	HTML	files	can	be	saved	to	the	wwwroot	web	folder	of	your	project,
while	additional	JavaScript	files	can	be	saved	there	as	well:

WOW! eBook
www.wowebook.org

saeid
Line

saeid
Line

saeid
Rectangle

The	following	code	shows	the	contents	of	a	simple	HTML	file	named	ng-hello.html:

<!DOCTYPE	html>	

<html>	

<head>	

				<meta	charset="utf-8"	/>	

				<title>Hello,	Angular!</title>	

</head>	

<body	ng-app>	

				<h1>Hello,	Angular!</h1>	

					

				Calculate	(2016	-	1990)	=	{{2016-1990}}	

				<script	src="../lib/angular/angular.js"></script>	

</body>	

</html>	

The	following	screenshot	is	the	output	of	ng-hello.html:

WOW! eBook
www.wowebook.org

Note	that	the	expression	{{2016-1990}}	is	actually	calculated	as	an	arithmetic	operation,	and
the	result	(26)	is	displayed	in	the	browser.

The	following	code	shows	data	binding	in	action	in	the	sample	file	ng-binding.html:

<!DOCTYPE	html>	

<html>	

<head>	

				<meta	charset="utf-8"	/>	

				<title>Data	Binding	in	Angular</title>	

</head>	

<body	ng-app>	

				<h1>Data	Binding	in	Angular</h1>	

				<h2>Patient	Details</h2>	

				

				<ul	ng-init="lastName='Smith';	

firstName='John';socialSecurityNumber='123550001'">	

								Name:	{{lastName}},	{{firstName}}	

								SSN:		

					

	

				<script	src="../lib/angular/angular.js"></script>	

</body>	

</html>	

The	following	screenshot	is	the	output	of	ng-binding.html:

WOW! eBook
www.wowebook.org

Note	the	following:

The	ng-app	directive	within	the	<body>	tag	indicates	the	root	element	of	the	Angular
application
The	ng-init	directive	within	the		tag	initializes	the	expression	with	the	scope	of	the
	block
The	double	curly	braces	within	the	first		element	evaluate	variables	initialized	within
the	
The	ng-bind	directive	in	the	second		element	is	another	way	to	bind	to	a	variable
Both	ways	of	data	binding	are	valid

The	following	code	shows	a	repeater	in	action	in	the	sample	file	ng-repeater.html:

<!DOCTYPE	html>	

<html>	

<head>	

				<meta	charset="utf-8"	/>	

				<title>Angular	Repeaters</title>	

</head>	

<body	ng-app>	

				<h1>Angular	Repeaters</h1>	

	

				<h2>Patient	Records</h2>	

				<div	ng-init="patients=['Smith,	John','Doe,	Jane',	'Smith,	Lisa']">	

									

												<li	ng-repeat="patient	in	patients">	

																{{patient}}	

													

									

				</div>	

	

WOW! eBook
www.wowebook.org

				<script	src="../lib/angular/angular.js"></script>	

</body>	

</html>	

The	following	screenshot	is	the	output	of	ng-repeater.html:

Here,	note	the	following:

The	ng-init	directive	initializes	a	simple	array	of	patient	names,	each	stored	in	a	string
The	ng-repeat	directive	enumerates	through	each	patient	in	the	array
The	double	curly	braces	appear	inside	an		element,	which	is	repeated	in	the	eventual
HTML	that	is	generated	in	the	DOM

The	following	code	shows	a	basic	example	of	using	the	Web	API	controller	that	we	created	in
the	previous	chapter,	in	the	sample	file	ng-rest.html:

<!DOCTYPE	html>	

<html>	

<head>	

				<meta	charset="utf-8"	/>	

				<title>RESTful	Endpoints	from	Angular</title>	

</head>	

<body	ng-app="patientRecordsApp">	

				<h1>RESTful	Endpoints	from	Angular</h1>	

					

				<div	ng-controller="patientController">	

									

												<li	ng-repeat="patient	in	patients">	

																{{patient.lastName}},	{{patient.firstName}}	

													

									

WOW! eBook
www.wowebook.org

				</div>	

					

				<script	src="../lib/angular/angular.js"></script>	

				<script	src="../js/ng-rest.js"></script>	

</body>	

</html>	

It	uses	the	Model	View	Controller	pattern	on	the	client	side	by	letting	a	controller	update	the
model	data,	which	is	then	displayed	in	the	HTML.	In	the	following	code,	you	will	notice	that
there	is	a	reference	to	a	JavaScript	file	named	ng-rest.js:

(function	()	{	

				'use	strict';	

				var	prApp	=	angular.module('patientRecordsApp',	[]);	

})();	

	

(function	()	{	

				'use	strict';	

	

				var	pService	=	'patientFactory';	

	

				angular.module('patientRecordsApp').factory(pService,	

								['$http',	patientFactory]);	

	

				function	patientFactory($http)	{	

	

								function	getPatientsFromApi()	

								{	

												//	NOTE:	the	port	number	should	be	changed	as	necessary		

												return	$http.get('http://localhost:50915/api/Patient');	

								}	

	

								var	patientService	=	{	

												getPatientsFromApi:	getPatientsFromApi	

								};	

								return	patientService;	

				}	

})();	

	

(function	()	{	

				'use	strict';	

	

				var	pController	=	'patientController';	

	

				angular.module('patientRecordsApp').controller(pController,	

								['$scope',	'patientFactory',	patientController]);	

	

				function	patientController($scope,	patientFactory)	{	

								$scope.patients	=	[];	

	

								patientFactory.getPatientsFromApi().success(function	(patientData)	{	

												$scope.patients	=	patientData;	

												console.log("Data	obtained	successfully.");	

								}).error(function	(error)	{	

												console.log("An	error	has	occured.");	

								});	

WOW! eBook
www.wowebook.org

				}	

})();	

In	the	preceding	code,	the	getPatientsFromApi()method	is	responsible	for	calling	the	API
method	in	the	server-side	code	to	display	the	following	results	in	the	web	browser:

To	get	the	preceding	Angular	sample	to	work,	run	the	previous	Web	API	project	first	and
refer	to	the	API	URL	at	its	specific	port	number	before	performing	an	API	call.	You	could
also	add	a	new	server-side	API	controller	in	your	Angular	project	if	you	prefer.

WOW! eBook
www.wowebook.org

Model-View-ViewModel	(MVVM)	with
KnockoutJS
The	official	ASP.NET	documentation	mentions	KnockoutJS	as	an	option	for	building	a
Model-View-ViewModel	(MVVM)	web	application;	refer	to
http://docs.asp.net/en/latest/client-side/knockout.html	.

WOW! eBook
www.wowebook.org

http://docs.asp.net/en/latest/client-side/knockout.html

Getting	started	with	KnockoutJS
KnockoutJS	is	a	popular	JavaScript	framework	that	you	can	use	by	itself,	or	with	jQuery,	and
other	JavaScript	libraries.	It	uses	the	MVVM	pattern	on	the	client	side	and	facilitates	data
binding	between	HTML	elements	and	JavaScript	variables.

Similar	to	AngularJS,	the	easiest	way	to	set	up	KnockoutJS	to	your	web	application	in	Visual
Studio	2015	is	to	update	your	bower.json	file	in	a	new	web	application.	Once	again,	launch
Visual	Studio	2015,	click	on	File	|	New	|	Project,	and	then	create	a	new	Web	Application
using	the	new	ASP.NET	Template	(not	the	empty	one).

Just	like	previously,	this	should	automatically	create	a	bower.json	configuration	file	that	you
can	edit.	Add	an	entry	for	"knockout"	under	"dependencies".	You	may	use	IntelliSense	to	help
you	decide	which	version	numbers	to	use.	Once	again,	you	may	have	to	click	on	Show	All
Files	in	the	Solution	Explorer	to	see	the	bower	file.	The	following	screenshot	shows	the	bower
file:

The	bower.json	file	"Knockout"	:	"3.4.0"

Almost	immediately	after	you	add	the	entry,	the	necessary	JavaScript	dependency	will	be
added	to	your	Bower	folder	under	/Dependencies/Bower/,	as	shown	in	the	following
screenshot:

WOW! eBook
www.wowebook.org

Knockout	(3.4.0)

The	following	screenshot	shows	how	your	lib	folder	should	look	after	the	Knockout	module
is	placed	into	it:

WOW! eBook
www.wowebook.org

WOW! eBook
www.wowebook.org

KnockoutJS	syntax	and	features
KnockoutJS	syntax	can	be	understood	by	recognizing	the	following:

Data-binding	setup	using	data-bind	attribute	within	HTML	tags
Associating	bindings	with	a	data	model	using	.applyBindings()
Auto-updates	using	observable()	for	objects
Auto-updates	using	observableArray()	for	collections
Custom	bindings	using	computed()	for	one	or	more	observables

To	learn	more	about	KnockoutJS,	read	through	the	official	documentation	at
http://knockoutjs.com/documentation/introduction.html	.

WOW! eBook
www.wowebook.org

http://knockoutjs.com/documentation/introduction.html

Building	a	web	application	with	KnockoutJS
Once	you	have	your	dependency	set	up	in	your	project,	you	may	add	a	script	reference	to
KnockoutJS	in	your	HTML	code.

The	following	code	shows	a	basic	example	of	binding	a		element	to	a	simple	data
value	in	the	sample	file	ko-hello.html:

<!DOCTYPE	html>	

<html>	

<head>	

				<meta	charset="utf-8"	/>	

				<title>Hello,	Knockout!</title>	

				<script	type="text/javascript"	src="../lib/knockout/dist/knockout.js">

</script>	

</head>	

<body>	

				<h1>Hello,	Knockout!</h1>	

	

				<h2>Patient	Details</h2>	

	

				Name:		

	

				<script	type="text/javascript">	

								var	patientViewModel	=	{	

												patientName:	'John	Smith'	

								};	

								ko.applyBindings(patientViewModel);	

				</script>	

	

</body>	

</html>	

The	following	screenshot	shows	the	output	of	ko-hello.html:

WOW! eBook
www.wowebook.org

You	will	notice	the	following:

A	<script>	tag	identifies	the	location	of	KnockoutJS
A		tag	uses	the	data-bind	attribute	marked	as	a	text	value	to	display	a	patientName
A	view	model	is	defined	with	one	property,	patientName
ko.applyBindings()	is	called	by	passing	the	data	model	to	establish	the	connection

To	jump	right	into	a	Web	API	example,	the	following	code	makes	a	call	to	a	Web	API	method
to	get	a	list	of	patient	records	in	the	sample	file	ko-rest.html:

<!DOCTYPE	html>	

<html>	

<head>	

				<meta	charset="utf-8"	/>	

				<title>Web	API	from	KnockoutJS</title>	

				<script	type="text/javascript"	src="../lib/jquery/dist/jquery.js"></script>	

				<script	type="text/javascript"	src="../lib/knockout/dist/knockout.js">

</script>	

</head>	

<body>	

				<h1>Web	API	from	KnockoutJS</h1>	

	

				<h2>Patient	Details</h2>	

	

	

				<ul	data-bind="foreach:	Patients">	

									

												,		

													

									

					

WOW! eBook
www.wowebook.org

	

				<script	type="text/javascript">	

				var	patientViewModel	=	function	()	{	

								var	self	=	this;	

								self.Patients	=	ko.observableArray();	

								LoadPatientData();	

	

								//	NOTE:	the	port	number	below	should	be	changed	as	necessary		

								function	LoadPatientData()	{	

												$.ajax({	

																type:	"GET",	

																url:	"http://localhost:50915/api/Patient",	

																contentType:	"application/json;	charset=utf-8",	

																dataType:	"json",	

																success:	function	(data)	{	

																				self.Patients(data);		

																},	

																error:	function	(error)	{	

																				console.log("An	error	has	occurred.");	

																}	

												});	

								}	

				};	

				ko.applyBindings(new	patientViewModel());	

				</script>	

	

</body>	

</html>	

The	following	screenshot	shows	the	output	of	ko-rest.html:

In	the	preceding	example,	you	will	notice	the	following:
WOW! eBook

www.wowebook.org

A	<script>	tag	identifies	the	location	of	jQuery
A	second	<script>	tag	identifies	the	location	of	KnockoutJS
A		tag	uses	the	data-bind	attribute	to	enumerate	a	list	of	patients
Each		contains		tags	to	bind	to	lastName	and	firstName
A	basic	ViewModel	is	defined	to	hold	an	observableArray()	of	patients
A	function	named	LoadPatientData	calls	the	Web	API
Finally,	ko.ApplyBindings()	is	called	with	the	ViewModel	for	binding

Once	again,	you	must	make	sure	that	the	Web	API	is	up-and-running	if	it	is	in	a	different
project.

WOW! eBook
www.wowebook.org

Task	runners,	bundling,	and	minification	using
Bower,	Grunt,	and	Gulp
With	Visual	Studio	2015,	Microsoft	has	introduced	tighter	integration	with	client-side	package
managers	and	task	runners.	In	order	to	make	the	most	of	these	tools,	it	is	advisable	to	learn
about	what	they	do	and	when	to	use	them.

WOW! eBook
www.wowebook.org

Why	do	we	need	task	automation?
You	could	write	code	line	by	line	in	a	basic	text	editor	without	any	IntelliSense,	but	you	would
soon	be	itching	for	Visual	Studio	or	a	rich	IDE	to	get	more	work	done.	This	is	analogous	to
performing	certain	tasks	manually,	when	you	could	be	using	automated	tools	to	make	your
life	easier.

WOW! eBook
www.wowebook.org

Using	Bower	as	your	package	manager
To	work	with	client-side	dependencies,	you	need	to	work	with	a	package	manager	that	works
well	with	your	development	environment.	Bower	is	such	a	tool.

Instead	of	using	NuGet	to	install	client-side	packages	such	as	jQuery,	you	will	be	using
Bower	to	obtain	JavaScript	libraries	and	CSS	frameworks.	Instead	of	waiting	for	the	latest
versions	of	packages	to	be	available	on	NuGet,	you'll	benefit	from	getting	these	packages
using	Bower,	which	is	already	being	used	by	developers	around	the	world.

If	you	create	a	new	web	project	using	the	starter	template,	you	will	have	a	Bower
configuration	file	already	setup.	To	set	it	up	from	scratch,	create	a	new	empty	web	project,
and	a	new	configuration	file	to	it,	and	follow	these	steps:

1.	 In	Visual	Studio	2015,	click	on	File	|	New	|	Project.
2.	 Select	ASP.NET	Core	Web	Application	and	enter	a	project	name	and	location.
3.	 Select	the	Empty	template	for	ASP.NET	Core.
4.	 Right-click	on	the	web	project	then	and	click	on	Add	|	New	Item.
5.	 Under	the	Client-side	category,	add	new	Bower	configuration	file,	typically	named

bower.json.

In	bower.json,	add	a	new	dependency	for	bootstrap	as	follows:

{	

		"name":	"asp.net",	

		"private":	true,	

		"dependencies":	{	

				"bootstrap":	"3.3.7"	

		}	

}	

Use	IntelliSense	to	decide	which	version	of	bootstrap	you	would	like	to	use.	Almost
immediately,	the	lib	subfolder	within	wwwroot	will	be	populated	with	the	necessary	files	for
bootstrap	(the	dependency	you	added)	and	jquery	(which	bootstrap	is	dependent	on),	as
shown	in	the	following	screenshot:

WOW! eBook
www.wowebook.org

The	location	has	been	configured	based	on	the	entry	in	the	.bowerrc	file,	which	sits	alongside
bower.json,	but	usually	tucked	underneath	it,	in	Solution	Explorer.	The	following	code	is
from	.bowerrc:

{	

				"directory":	"wwwroot/lib"	

}	

For	more	information	on	using	Bower	as	a	client-side	package	manager	for	ASP.NET	Core
projects,	take	a	look	at	the	official	documentation	at	http://docs.asp.net/en/latest/client-
side/bower.html	.

WOW! eBook
www.wowebook.org

http://docs.asp.net/en/latest/client-side/bower.html

Using	Gulp	and	Grunt	as	task	runners
To	set	up	Gulp	and	Grunt	in	your	project,	add	a	new	item	at	the	project	level	of	type	NPM
Configuration	File	with	the	name	package.json.	Then,	update	the	devDependencies	section	to
include	the	following	references	to	Gulp	and	Grunt:

{	

		"version":	"1.0.0",	

		"name":	"asp.net",	

		"private":	true,	

		"devDependencies":	{	

				"gulp":	"3.9.1",	

				"gulp-less":	"3.1.0",	

				"grunt":	"1.0.1",	

				"grunt-contrib-clean":	"1.0.0"	

		}	

}	

In	the	Solution	Explorer,	verify	that	these	dependencies	are	now	visible	in	the	NPM	folder
within	your	dependencies.	Then,	add	a	LESS	file	named	styles.less	into	the	less	subfolder
at	your	project's	root,	with	the	following	LESS	code:

@light-gray:	#C0C0C0;	

@darker-gray:	@light-gray	-	#222;	

	

#banner	{	

		color:	@darker-gray;	

}	

This	LESS	code	will	auto-generate	a	darker	shade	of	gray	for	an	HTML	element	that	uses	an
ID	value	of	banner,	such	as	<div	id="banner">.

Add	two	new	items	to	your	project	of	types	Gulp	Configuration	File	and	Grunt
Configuration	File,	typically	named	gulpfile.js	and	gruntfile.js,	respectively.

Add	the	following	code	to	gulpfile.js	to	watch	your	LESS	files	and	compile	CSS	output
when	there	are	changes.	The	directive	in	the	first	line	also	instructs	Visual	Studio	to	run	each
task	based	on	specific	conditions,	such	as	after	a	build	or	when	the	project	is	opened:

///	<binding	AfterBuild='stylemaker'	ProjectOpened='lesswatcher'	/>	

var	gulp	=	require('gulp');	

var	gulpless	=	require('gulp-less')	

	

gulp.task('stylemaker',	function	()	{	

				gulp.src("./less/styles.less")	

								.pipe(gulpless({	compress:	true	}))	

								.pipe(gulp.dest("./wwwroot/css"));	

});	

	

gulp.task('lesswatcher',	function	()	{	

				gulp.watch("./less/*.less",	["stylemaker"]);	

});	

WOW! eBook
www.wowebook.org

Next,	add	the	following	code	to	gruntfile.js	to	ensure	that	the	CSS	output	folder	is	cleaned:

module.exports	=	function	(grunt)	{	

				grunt.initConfig({	

								clean:	["wwwroot/css/*"],	

				});	

				grunt.loadNpmTasks("grunt-contrib-clean");	

};	

You	can	use	the	Task	Runner	Explorer	window	to	run	the	preceding	tasks,	or	configure
bindings	to	enable	the	tasks	to	run	based	on	specific	conditions.	If	the	Task	Runner	Explorer
window	is	not	visible,	click	on	View	|	Other	Windows	|	Task	Runner	Explorer	from	the	top
menu	of	Visual	Studio.	The	following	screenshot	shows	the	Task	Runner	Explorer	window:

For	more	information	on	using	Grunt	and	Gulp	as	task	runners	for	ASP.NET	Core	projects,
take	a	look	at	the	official	documentation	at	the	following	URLs:

http://docs.asp.net/en/latest/client-side/using-gulp.html
http://docs.asp.net/en/latest/client-side/using-grunt.html

WOW! eBook
www.wowebook.org

http://docs.asp.net/en/latest/client-side/using-gulp.html
http://docs.asp.net/en/latest/client-side/using-grunt.html

Summary
In	this	chapter,	you	learned	how	to	use	a	Web	API	with	JavaScript,	after	which	you	covered
the	basics	of	AngularJS	and	KnockoutJS.	You	also	learned	about	client-side	tools	that	help
automate	some	common	tasks	while	building	an	ASP.NET	web	application	in	Visual	Studio
2015.

In	the	next	chapter,	you	will	learn	how	to	build	database-driven	web	applications	without
having	to	write	SQL	code.	Instead,	you	will	use	Entity	Framework,	an	object-relational
mapper	that	allows	you	to	write	code	to	represent	your	database	entities.

WOW! eBook
www.wowebook.org

Chapter	6.		Using	Entity	Framework	to	Interact
with	Your	Database	in	Code
In	Chapter	3	,	Understanding	MVC,	we	mentioned	Entity	Framework	(EF)	while	building	a
functional	ASP.NET	Core	MVC	web	application.	In	this	chapter,	we'll	go	deeper	into	EF	Core
1.0	and	cover	what	you	need	to	know	about	EF	Core,	that	is,	EF7	during	development.

It's	worth	noting	that	EF	Core	can	be	used	with	more	than	just	ASP.NET	Core	and	relational
databases.	In	fact,	it	has	also	been	designed	to	be	used	with	Universal	Windows	Platform
(UWP)	apps	on	Windows	10	and	Windows	desktop	apps	(Windows	Presentation
Foundation	(WPF)	or	WinForms).	Going	beyond	SQL	Server,	EF	Core	can	also	be	used
with	Azure	Table	Storage,	PostgreSQL,	SQLite,	and	even	NoSQL	databases.

For	the	purposes	of	this	book,	we	will	focus	primarily	on	ASP.NET	Core,	SQL	Server,	and
the	new	in-memory	provider.

WOW! eBook
www.wowebook.org

Object-relational	mapping	in	.NET
If	you've	used	EF	or	any	object-relational	mapper	(ORM)	earlier,	you	may	skim	this	section
and	move	on	to	the	next	section.	But	if	you're	new	to	ORM	frameworks,	this	section	is	for
you.

An	ORM	such	as	EF	makes	it	easy	for	you	to	interact	with	your	database	from	within	your
application	code.	The	following	screenshot	illustrates	ORM:

WOW! eBook
www.wowebook.org

Why	use	an	ORM?
It's	perfectly	feasible	to	build	a	fully	functional	web	application	without	any	ORM	at	all.	You
could	use	straight	ADO.NET	or	raw	SQL	to	talk	to	your	database	from	your	application	code.
You	could	write	SQL	code	to	create	your	database	objects	and	relationships.	You	could	keep
all	your	database	logic	in	the	database	by	heavy	use	of	stored	procedures	and	functions	or	you
could	use	an	ORM	such	as	EF	and	take	advantage	of	a	Code	First	approach.

While	database	administrators	might	scoff	at	the	use	of	an	ORM,	developers	should	feel
confident	that	they	will	gain	more	power	and	control	of	how	their	database	entities	are
created,	manipulated,	and	maintained	over	time.	The	following	is	a	list	of	pros	and	cons	you
may	consider.

Pros	of	using	an	ORM:

Common	codebase:	Instead	of	having	disconnected	database	creation	code	outside	your
application	codebase,	you	can	define	all	your	entities	in	your	code
Compile-time	benefits:	If	you	make	certain	mistakes	in	your	model	code,	the	compiler
will	catch	them
Easier	updates:	If	you	need	to	update/rename	anything	in	your	models,	your	IDE	makes
it	a	breeze
Worry-free	constraints:	You	can	easily	set	up	your	keys,	relationships,	and	other
constraints	using	attributes	and	fluent	code
Manageable	maintenance:	With	the	help	of	migrations,	you	and	your	team	can
upgrade/downgrade	your	database	as	needed	and	keep	track	of	revisions.

Cons	of	using	an	ORM:

Learning	curve:	If	you	haven't	used	an	ORM	before,	you	can't	just	add	it	to	an	existing
application	in	a	day.	Start	small	use	it	for	newer	projects	and	take	your	time	when
updating	existing	projects.
Complex	queries:	If	you	or	someone	in	your	team	is	already	proficient	in	SQL	queries,
you	may	have	difficulties	rebuilding	the	results	of	complex	queries	using	Language-
Integrated	Query	(LINQ)	syntax.	Over	time,	it	may	get	easier	for	you	or	you	may
decide	that	ORMs	are	not	right	for	a	specific	application.
Performance	(arguable):	When	ORMs	were	first	introduced,	you	might	have	considered
the	performance	implications	of	adding	yet	another	layer	between	your	application	code
and	the	database.	But	with	modern	ORM	frameworks	such	as	EF	Core,	the	performance
improvements	should	make	it	worth	the	effort,	with	less	cause	for	concern.

Now	that	we've	got	the	pros	and	cons	out	of	the	way,	let's	focus	on	why	you	would	pick	EF	as
the	ORM	of	choice	for	your	web	application.

WOW! eBook
www.wowebook.org

saeid
Rectangle

saeid
Rectangle

Why	Entity	Framework?
If	you've	worked	with	ORMs	earlier,	you	may	have	used	NHibernate	or	an	earlier	version	of
EF.	You	may	have	used	Hibernate	within	a	Java	application.	Regardless	of	your	background,
there	are	plenty	of	reasons	why	EF	is	a	good	choice	for	your	ASP.NET	Core	applications.

First	of	all,	the	new	EF	goes	with	the	new	ASP.NET	like	no	other	version	before	it.	Earlier
versions	of	the	EF	runtime	and	tooling	were	released	alongside	the	.NET	framework,	but
more	recent	versions	separated	out	the	runtime,	which	enabled	out-of-band	releases	through
NuGet.	The	latest	versions	of	the	runtime	can	be	obtained	through	NuGet,	while	major
releases	are	synced	with	Visual	Studio	releases.

WOW! eBook
www.wowebook.org

The	evolution	of	Entity	Framework
EF	has	improved	a	lot	over	time.	The	introduction	of	a	Code	First	approach	and	EF
Migrations	made	many	developers	take	note.	At	the	same	time,	there	are	plenty	of	developers
who	have	yet	to	work	with	EF.

Over	the	years,	the	EF	team	has	continued	to	collect	feedback	from	developers	who	have	been
garnering	experience	with	their	product.	As	a	result,	the	team	has	put	together	a	mature
product	that	has	only	gotten	better	with	time.

If	you	are	interested	in	providing	feedback	or	seeing	input	from	other	developers,	head	on
over	to	https://data.uservoice.com	.

Some	of	the	new	features	that	emerged	include	batch	updates,	shadow	properties,	an	in-
memory	provider,	and	improved	methods	of	working	with	disconnected	data.	We	will	discuss
new	features	in	more	detail	in	this	chapter,	with	a	sample	project	to	illustrate	how	it	all	comes
together.

WOW! eBook
www.wowebook.org

https://data.uservoice.com
saeid
Highlight

EF	6.x	for	.NET	Framework	versus	EF	Core	1.0
If	you've	been	using	EF	6	until	now,	you	should	take	the	time	to	learn	about	what	has	changed
in	EF	Core.	The	basic	concepts	and	usage	of	EF	should	be	familiar,	but	there	are	some	new
additions	(and	some	removals),	which	will	affect	your	learning	curve	for	picking	up	EF	Core.

If	you	have	been	doing	Code	First	development,	you	should	already	be	familiar	with	building
your	own	models	in	your	application	code.	If	you	have	already	used	Migrations,	you	should
also	be	familiar	with	generating/updating	your	database	by	triggering	a	migration.	However,
if	you	have	gotten	used	to	visual	data	modeling	tools	and	EDMX	files,	you	may	have	to
unlearn	a	few	things.	EDMX	files	are	Entity	Data	Model	files	that	can	be	used	to	represent
your	data	model	visually,	using	earlier	versions	of	EF.

WOW! eBook
www.wowebook.org

saeid
Highlight

What's	different	in	EF	Core
First	of	all,	it's	worth	noting	that	EDMX	files	are	no	longer	supported	as	a	means	of	creating
your	data	model.	This	doesn't	mean	that	there	are	no	ways	to	visually	model	your	database	or
start	with	a	database-first	approach.	On	the	contrary,	you	can	still	start	off	with	an	existing
database	and	use	external	tools	to	generate	your	model	classes	if	you	choose.

That	being	said,	we	will	focus	on	a	Code	First	approach	with	EF	Core.	This	is	important
because	it	will	help	you	maintain	better	control	of	your	model	classes,	which	will	make	code
merges	much	easier.

Prior	versions	of	EF	relied	on	ObjectContext	as	a	means	of	working	with	your	database
entities	as	objects	in	your	code.	Even	with	the	DbContext	API	in	EF	4.1,	there	was	still
continued	reliance	on	the	original	ObjectContext	underneath.	In	EF	Core,	ObjectContext	will
leave	us,	but	DbContext	remains.	DbContext	represents	a	combination	of	design	patterns	that
allow	you	to	work	with	your	database	easily	from	your	application	code.

Although	EF6	was	available	through	NuGet,	EF	Core	takes	its	dependency	management	to
another	level	in	keeping	with	ASP.NET	Core.	You	can	choose	to	use	just	the	pieces	you	need,
including	separate	packages	for	Core,	Commands,	Relational	(includes	migrations),	and	SQL
Server.	If	you	include	a	specific	package	as	a	reference,	Visual	Studio	2015	will	automatically
include	additional	dependencies,	as	needed.

WOW! eBook
www.wowebook.org

saeid
Highlight

saeid
Highlight

saeid
Highlight

saeid
Highlight

Getting	started	with	EF	Core
If	you	create	a	new	Web	Application	project	in	Visual	Studio	2015	using	the	standard	Web
Application	template,	you	should	already	have	EF	Core	set	up.	You	may	recall	the	Patient
Records	web	app	from	Chapter	3	,	Understanding	MVC,	in	which	we	set	up	a	basic	web
project	with	database	connectivity.

If	you	start	with	an	empty	project,	you	should	type	in	your	EF	references	in	your
project.json	configuration	file.	In	my	Patient	Records	app,	I	have	the	following	reference:

"Microsoft.EntityFrameworkCore.SqlServer":	"1.0.0"	

In	the	Solution	Explorer	panel,	you	can	expand	each	reference	to	identify	related	references
that	were	pulled	in	automatically	as	dependencies,	as	shown	in	the	following	screenshot:

Depending	on	when	you	add	your	references,	your	version	numbers	may	vary.	Although	you
can	type	in	any	current	or	earlier	version	in	your	configuration	file,	you	will	most	likely	let
Visual	Studio's	IntelliSense	feature	guide	you	with	little	pop-up	tooltip	suggestions.

WOW! eBook
www.wowebook.org

saeid
Highlight

In	the	Startup.cs	file,	you	should	have	a	call	to	AddEntityFrameworkStores()	within	the
ConfigureServices()	method,	followed	by	calls	to	add	a	specific	database	provider	and	a
database	context	to	work	with.	To	use	EF	Core,	first	ensure	that	the	following	using	statement
appears	in	your	Startup.cs	file:

using	Microsoft.EntityFrameworkCore;	

In	my	Patients	Record	application,	the	ConfigureServices()	method	reads	as	follows:

public	void	ConfigureServices(IServiceCollection	services)	

{	

				//	Add	framework	services.	

				services.AddDbContext<ApplicationDbContext>(options	=>	

								

options.UseSqlServer(Configuration.GetConnectionString("DefaultConnection")));	

	

				services.AddIdentity<ApplicationUser,	IdentityRole>()	

								.AddEntityFrameworkStores<ApplicationDbContext>()	

								.AddDefaultTokenProviders();	

													

				//	rest	of	method	removed	for	brevity	

}	

The	preceding	code	contains	the	following	terms	and	method	calls:

Microsoft.EntityFrameworkCore:	This	namespace	provides	access	to	EF	Core
AddDbContext<>():	This	adds	a	db	context	called	ApplicationDbContext
UseSqlServer():	This	configures	an	SQL	Server	database	connection

The	database	context	lives	in	its	own	class	file,	ApplicationDbContext.cs,	in	your	Data
folder.	This	is	where	you	will	add	one	or	more	DbSet	entries	to	represent	your	entities.

The	database	connection	string	can	exist	as	a	text	value	in	your	appsettings.json	file,	which
lives	in	the	root	of	your	project	location.	This	connection	string	can	also	exist	as	an
environment	variable	for	your	specific	environment,	whether	it's	your	development	machine,
an	on-premise	server,	or	a	cloud	environment.

Once	your	references	and	your	configuration	files	have	been	set	up,	you	are	now	ready	to	use
EF	in	your	code.

WOW! eBook
www.wowebook.org

saeid
Highlight

saeid
Highlight

saeid
Underline

saeid
Pencil

saeid
Rectangle

saeid
Rectangle

saeid
Highlight

saeid
Highlight

saeid
Highlight

saeid
Highlight

What	else	is	new?
Before	we	get	into	the	rest	of	the	code,	let's	take	a	look	at	what	else	is	new	with	EF	Core:

Migrations	History:	In	prior	versions	of	EF,	each	new	migration	(that	is,	database
revision)	would	generate	a	new	entry	into	a	special	table	in	the	database.	Such	a	table	still
exists	with	EF	Core	and	is	called	__EFMigrationsHistory,	but	it	has	been	simplified	to
include	only	an	alphanumeric	migration	ID,	in	addition	to	the	product	version.
Snapshots:	The	migration	history	table	used	to	include	snapshots	of	each	migration,	but
this	has	been	moved	to	a	code	file	in	your	Migrations	subfolder	within	a	Data	folder,
such	as	ApplicationDbContextModelSnapshot.cs.	The	actual	filename	may	vary
depending	on	the	name	of	your	database	context.
Batch	updates:	EF	Core	generates	SQL	statements	to	run	database	commands	based	on
your	application	code.	You	can	configure	a	maximum	batch	size	when	setting	up	your
database	context.
Shadow	properties:	You	can	used	shadow	properties	to	dynamically	extend	your	model
from	within	your	OnModelCreating()	method	in	your	database	context.	These	changes
will	make	it	to	your	database,	but	will	not	affect	your	actual	model	files.
In-memory	providers:	Instead	of	interacting	directly	with	your	actual	database,	you	can
choose	to	use	an	in-memory	provider.	This	will	also	come	in	handy	when	setting	up	and
running	unit	tests.
Disconnected	data:	There	are	improved	ways	to	work	with	disconnected	data,	which
should	make	it	easier	for	developers	to	add	and	update	data	in	disconnected-data
scenarios.

WOW! eBook
www.wowebook.org

saeid
Highlight

saeid
Highlight

saeid
Highlight

saeid
Highlight

Code	First	approach	to	database	design	and
relationships
So	what	exactly	is	a	Code	First	approach?	It	is	exactly	what	it	sounds	like.	You	can	model
your	database	objects	as	entity	classes	in	your	code.	To	establish	relationships	between	those
objects,	you	can	define	a	class	to	include	other	classes	as	member	variables.	If	you	already
have	an	existing	database,	you	can	create	an	entity	model	in	your	code	to	represent	some	(or
all)	of	your	database	objects.

From	our	Patient	Records	example	from	Chapter	3	,	Understanding	MVC,	we	already	have	a
model	class	that	represents	a	human.	In	this	chapter,	we	will	add	a	RobotDoctor	class	to	our
project	to	build	a	computerized	system	for	a	futuristic	hospital	with	robot	doctors.	Then,	we
will	establish	a	relationship	between	Humans	and	RobotDoctors	in	the	code	so	that	each	robot
doctor	can	be	assigned	to	one	or	more	human	patients	in	the	database.

WOW! eBook
www.wowebook.org

saeid
Highlight

saeid
Highlight

saeid
Highlight

saeid
Highlight

saeid
Highlight

Updating	the	models
In	the	Models	folder	of	the	sample	project	from	Chapter	3	,	Understanding	MVC,	let's	add	a
new	model	class	to	represent	a	RobotDoctor	and	then	update	the	existing	Human	class	to	add
fields	to	recognize	each	human's	relationship	with	a	robot	doctor.	We	will	also	have	to	update
our	context	file,	ApplicationDbContext.cs,	with	a	separate	DbSet	for	each	set	of	entities.

To	add	the	RobotDoctor	class,	follow	these	steps:

1.	 In	the	Solution	Explorer	panel,	right-click	on	the	Models	folder.
2.	 Click	on	Add	|	New	Item	in	the	context	menu.
3.	 Name	the	new	class	RobotDoctor.cs.
4.	 Add	the	following	code	for	the	RobotDoctor	class:

using	System.ComponentModel.DataAnnotations;	

	

namespace	PatientRecords.Models	

{	

				public	class	RobotDoctor	

				{	

								[Display(Name	=	"Robot	Doctor	ID")]	

								public	int	RobotDoctorId	{	get;	set;	}	

	

								[Display(Name	=	"Model	Number")]	

								public	int	ModelNumber	{	get;	set;	}	

	

								[Display(Name	=	"Preferred	Name")]	

								public	string	PreferredName	{	get;	set;	}	

				}		

}	

The	RobotDoctorId	integer	field	will	be	used	as	the	primary	key.	The	remaining	fields	will
store	and	display	the	model	number	and	preferred	name,	respectively.	The	Display	attributes
will	be	used	as	friendly	text	labels	for	the	fields.

To	update	the	Human	class,	follow	these	steps:

1.	 Open	the	Human.cs	class	file	from	the	Models	folder.
2.	 Add	the	following	fields	to	the	bottom	of	the	class:

[Display(Name	=	"Robot	Doctor")]	

public	int	RobotDoctorId	{	get;	set;	}	

public	RobotDoctor	RobotDoctor	{	get;	set;	}	

The	RobotDoctorId	integer	field	in	the	Human	class	will	be	used	as	a	foreign	key	to	refer	to	the
corresponding	field	in	the	RobotDoctor	class.	The	RobotDoctor	object	will	allow	each	Human
to	be	assigned	to	a	specific	RobotDoctor.	The	Display	attribute	will	be	used	as	a	friendly	text
label	to	be	used	for	the	field.

WOW! eBook
www.wowebook.org

saeid
Underline

saeid
Underline

saeid
Highlight

saeid
Highlight

saeid
Rectangle

saeid
Highlight

saeid
Highlight

To	update	the	database	context,	follow	these	steps:

1.	 Open	the	ApplicationDbContext.cs	class	file	from	the	Data	folder.
2.	 Add	a	new	DbSet	for	RobotDoctors	at	the	bottom	of	the	class.
3.	 Update	the	DbSet	for	Humans	by	pluralizing	the	word	Human	to	Humans,	shown	in	the

following	code:

public	DbSet<RobotDoctor>	RobotDoctors	{	get;	set;	}	

public	DbSet<Human>	Humans	{	get;	set;	}	

The	DbSet	named	RobotDoctors	will	represent	the	set	of	robot	doctors	stored	in	the	database.
The	DbSet	named	Humans	will	represent	the	set	of	Humans	stored	in	the	database.	While	it	is	not
necessary	to	pluralize	it,	this	minor	change	should	help	clarify	its	purpose.

WOW! eBook
www.wowebook.org

saeid
Rectangle

saeid
Highlight

saeid
Highlight

Updating	the	controllers
When	we	updated	DbSet	named	Human	to	Humans	in	the	ApplicationDbContext	class,	our
HumanController	will	still	retain	references	to	the	old	name.	There	are	two	ways	to	fix	this:
you	could	rename	all	Human	references	to	Humans	manually	in	the	controller	file	or	you	could
use	Visual	Studio's	built-in	rename	feature.

To	use	the	rename	feature,	you	can	click	on	DbSet	named	Human	in	your	code	(before
renaming	Human	to	Humans)	and	then	follow	up	with	a	rapid	set	of	keystrokes:	Ctrl	+	R	+	R.
This	would	allow	you	to	type	in	the	new	value	everywhere	it	is	being	referenced.	You	will	get
a	chance	to	preview	your	changes	by	checking	the	appropriate	checkbox	that	appears,	as
shown	in	the	following	screenshot:

Before	we	update	the	rest	of	the	controller	methods,	ensure	that	the	following	using
statements	are	at	the	top	of	the	HumanController	class:

using	System.Threading.Tasks;	

using	System.Collections.Generic;	

using	System;	

The	following	namespaces	are	useful	for	the	tasks	we	will	perform	in	the	controller:

The	Threading.Tasks	namespace	will	allow	us	to	use	asynchronous	methods.
The	Collections.Generic	namespace	will	allow	us	to	use	an	IEnumerable	list.
The	System	namespace	will	allow	us	to	use	String	methods.

To	ensure	that	we	include	RobotDoctor	data	for	each	Human	in	a	list	of	Humans,	update	the
Index()	method	of	the	HumanController	class	to	include	the	following	code:

public	async	Task<IActionResult>	Index()	

{	

				var	humans	=	_context.Humans.Include(h	=>	h.RobotDoctor);	

				return	View(humans);	

}	

In	the	preceding	code,	the	call	to	the	DbSet	named	Humans	within	the	database	context	is	pulled

WOW! eBook
www.wowebook.org

saeid
Highlight

saeid
Rectangle

saeid
Highlight

saeid
Highlight

along	with	RobotDoctor	data	by	the	Include()	method.	The	method	then	returns	the	set	of
humans	to	the	corresponding	view.	The	view	is	then	responsible	for	iterating	through	a	list	of
Humans	to	display	to	the	user.

To	ensure	that	we	include	RobotDoctor	data	for	a	specific	Human	in	its	Details	page,	update
the	Details()	method	to	include	the	following	code:

public	async	Task<ActionResult>	Details(int?	id)	

{	

				Human	human	=	await	_context.Humans	

								.Include(h	=>	h.RobotDoctor)	

								.SingleOrDefaultAsync(h	=>	h.ID	==	id);	

				if	(human	==	null)	

				{	

								return	NotFound();	

				}	

				return	View(human);	

}	

Note	that	the	DbSet	named	Humans	is	followed	by	a	call	to	Include()	to	make	sure	that
RobotDoctor	data	is	also	included.	While	we're	at	it,	we	are	also	taking	advantage	of
asynchronous	method	calling	by	including	the	following:

async	keyword	in	the	method	definition	of	the	Details()	method
Task<ActionResult>	return	type	instead	of	just	ActionResult
SingleOrDefaultAsync()	instead	of	just	Single()
await	keyword	in	async	method	call

Next,	let's	update	the	HttpGet	version	of	the	Create()	method	to	get	a	list	of	RobotDoctors
before	displaying	an	entry	form	to	create	new	Humans.	Since	HttpGet	is	the	default	verb	for
controller	methods,	the	method	does	not	need	an	attribute	to	indicate	its	HttpVerb.	Replace
Create()	with	the	following	code:

public	IActionResult	Create()	

{	

				ViewBag.RobotDoctors	=	GetListOfRobotDoctors();	

				return	View();	

}	

	

private	IEnumerable<SelectListItem>	GetListOfRobotDoctors(int	selected	=	-1)	

{	

				var	tmp	=	_context.RobotDoctors.ToList();			

	

				//	Create	authors	list	for	<select>	dropdown	

				return	tmp	

								.OrderBy(rb	=>	rb.ModelNumber)	

								.Select(rb	=>	new	SelectListItem	

								{	

												Text	=	String.Format("{0}:	{1}",	rb.ModelNumber,	rb.PreferredName),		

												Value	=	rb.RobotDoctorId.ToString(),	

												Selected	=	rb.RobotDoctorId	==	selected	

								});	

WOW! eBook
www.wowebook.org

saeid
Rectangle

}	

In	the	preceding	code,	the	Create()	method	is	followed	by	the	addition	of	the	new	private
method	to	do	the	work	of	getting	the	data.	The	Create()	method	then	returns	the	default	view,
Create.cshtml,	to	display	an	entry	form.

Next,	we	also	need	to	update	the	HttpPost	version	of	the	Create()	method.	This	method	will
specifically	have	the	HttpPost	attribute	above	the	method	definition.	Update	this	Create()
method	with	the	following	code:

[HttpPost]	

[ValidateAntiForgeryToken]	

public	async	Task<ActionResult>	Create([Bind("SocialSecurityNumber",	

"DateOfBirth",	"FirstName",	"LastName",	"RobotDoctorId")]	Human	human)	

{	

				if	(ModelState.IsValid)	

				{	

								_context.Humans.Add(human);	

								await	_context.SaveChangesAsync();	

								return	RedirectToAction("Index");	

				}	

				return	View(human);	

}	

Another	thing	to	note	is	the	Bind	attribute	within	the	Create()	method's	argument	list.	This
attribute	helps	us	identify	exactly	which	model	properties	we	would	like	to	bind	to	the
corresponding	form	fields.

Finally,	let's	update	the	Edit()	methods	with	the	following	code,	starting	with	the	HttpGet
version.	As	with	the	Create()	method,	the	HttpGet	version	won't	necessarily	have	any
attribute	above	it	to	indicate	the	HttpVerb	used	for	the	controller	method:

public	async	Task<IActionResult>	Edit(int?	id)	

{	

				if	(id	==	null)	

				{	

								return	NotFound();	

				}	

	

				Human	human	=	_context.Humans.Single(m	=>	m.ID	==	id);	

				if	(human	==	null)	

				{	

								return	NotFound();	

				}	

	

				ViewBag.RobotDoctors	=	GetListOfRobotDoctors();	

				return	View(human);	

}	

The	primary	change	to	this	Edit()	method	is	the	addition	of	a	dynamic	ViewBag	property
named	RobotDoctors,	similar	to	the	one	seen	in	the	Create()	method.	It	uses	the	same	private
method	to	obtain	a	list	of	RobotDoctors.	It	returns	the	Human	model	to	the	view,	Edit.cshtml,

WOW! eBook
www.wowebook.org

which	displays	an	entry	form	to	edit	an	existing	Human	entry.

Finally,	let's	update	the	HttpPost	version	of	the	Edit()	method.	Replace	this	method	with	the
following	code	to	ensure	that	the	Human	model	is	updated	with	the	passed	data:

[HttpPost]	

[ValidateAntiForgeryToken]	

public	async	Task<IActionResult>	Edit(int	id,	[Bind("SocialSecurityNumber",	

"DateOfBirth",	"FirstName",	"LastName",	"RobotDoctorId")]	Human	human)	

{	

				if	(id	!=	human.ID)	

				{	

								return	NotFound();	

				}	

													

				if	(ModelState.IsValid)	

				{	

								human.ID	=	id;	

								_context.Humans.Attach(human);	

								_context.Entry(human).State	=	EntityState.Modified;	

								await	_context.SaveChangesAsync();	

								return	RedirectToAction("Index");	

				}	

				return	View(human);	

	

}	

To	notify	EF	Core	of	the	modified	state,	the	State	property	of	the	edited	entry	is	set	to
EntityState.Modified.	If	there	are	any	validation	errors,	the	user	is	directed	to	the	same
Edit.cshtml	view	by	passing	in	the	updated	Human	model.	If	there	are	no	validation	errors,	the
user	is	redirected	to	the	Index.cshtml	view	to	display	the	current	list	of	Human	entries.

The	Delete()	methods	do	not	need	any	additional	changes,	as	the	entity	code	generation	takes
care	of	the	proper	deletion	of	each	entity.	When	a	selected	Human	is	deleted	using	the
appropriate	controller	methods,	it	displays	a	confirmation	screen	prepared	by	the	HttpGet
version	of	the	Delete()	method.	Once	confirmed,	the	HttpPost	version	of	the	Delete()
method	takes	care	of	the	actual	removal	before	calling	SaveChanges()	to	update	the	database
accordingly.	After	the	deletion	operation,	the	user	is	then	redirected	to	the	Index	method	to
view	a	list	of	Human	entries.

WOW! eBook
www.wowebook.org

Updating	the	views
To	complete	the	coding	changes,	you	must	update	the	Views	for	the	Human	controller.	These
include	the	following	.cshtml	files	in	your	Human	subfolder	within	the	Views	folder:

Index
Edit
Details
Create

In	the	Index.cshtml	file,	add	the	following	table	header	<th>	block	to	display	a	label	for	the
robot	doctor's	preferred	name,	right	after	the	SSN	label:

<th>	

				@Html.DisplayNameFor(model	=>	model.RobotDoctor.PreferredName)	

</th>	

Within	the	foreach	loop	iterating	through	the	items	in	the	Model,	add	a	table	data	<td>	block
to	display	the	preferred	name,	right	after	the	SSN	field,	which	is	used	to	store	a	unique	Social
Security	Number.	This	should	be	just	before	the	links	for	Edit,	Details,	and	Delete:

<td>	

				@Html.DisplayFor(modelItem	=>	item.RobotDoctor.PreferredName)	

</td>	

In	the	Edit.cshtml	file,	update	the	<form>	tag	to	include	additional	tag	helper	attributes:

<form		

				asp-controller="Human"		

				asp-action="Edit"		

				method="post"		

				asp-route-id="@Model.ID">	

The	attributes	are	useful	for	various	reasons:

asp-controller	and	asp-action:	This	indicates	the	controller	name	and	method	to
submit	the	form	to
method:	This	indicates	the	method	to	submit	your	form	with,	usually	POST
asp-route-id:	This	indicates	the	value	of	ID	to	associate	with	the	submission

Below	the	validation	summary	within	the	form,	remove	the	hidden	ID	field:

<input	type="hidden"	asp-for="ID"	/>	

Instead,	replace	it	with	the	following	code:

<div	class="form-group">	

				<label		

								asp-for="RobotDoctorId"		

								class="col-md-2	control-label"></label>	

				<div	class="col-md-10">	

WOW! eBook
www.wowebook.org

								<select		

																asp-for="RobotDoctorId"		

																asp-items="@ViewBag.RobotDoctors"></select>	

				</div>	

</div>	

The	preceding	code	displays	a	label	for	the	RobotDoctorId	field,	followed	by	a	drop-down	of
RobotDoctors.	You	may	recall	that	the	value	of	ViewBag.RobotDoctors	is	being	set	in	multiple
controller	methods.

In	the	Details.cshtml	file,	add	the	following	description	list	entries	within	pairs	of	<dt>/<dd>
blocks	to	display	labels	and	fields	for	each	robot	doctor's	ID,	model	number,	and	preferred
name,	right	after	the	SSN	label:

<dt>	

				@Html.DisplayNameFor(model	=>	model.RobotDoctor.RobotDoctorId)	

</dt>	

<dd>	

				@Html.DisplayFor(model	=>	model.RobotDoctor.RobotDoctorId)	

</dd>	

<dt>	

				@Html.DisplayNameFor(model	=>	model.RobotDoctor.ModelNumber)	

</dt>	

<dd>	

				@Html.DisplayFor(model	=>	model.RobotDoctor.ModelNumber)	

</dd>	

<dt>	

				@Html.DisplayNameFor(model	=>	model.RobotDoctor.PreferredName)	

</dt>	

<dd>	

				@Html.DisplayFor(model	=>	model.RobotDoctor.PreferredName)	

</dd>	

The	preceding	entries	should	be	added	just	before	the	</dl>	list	is	closed.

Similar	to	the	Edit	view,	you	must	update	the	Create	view	with	a	new	label	and	a	drop-down
to	display	the	list	of	RobotDoctors.	Below	the	validation	summary	within	the	form,	add	the
following	form-group:

<div	class="form-group">	

				<label		

								asp-for="RobotDoctorId"		

								class="col-md-2	control-label"></label>	

		<div	class="col-md-10">	

				<select		

								asp-for="RobotDoctorId"		

								asp-items="@ViewBag.RobotDoctors"></select>	

		</div>	

</div>	

Once	again,	the	dynamic	value	of	ViewBag.RobotDoctors	is	being	set	in	the	appropriate
controller	method.	Now	that	all	the	necessary	changes	have	been	made	to	the	models,

WOW! eBook
www.wowebook.org

controllers,	and	views,	you	are	ready	to	update	the	database	using	EF	Migrations.

WOW! eBook
www.wowebook.org

EF	Code	First	migrations	for	database
versioning	and	maintenance
In	EF,	you	can	use	migrations	to	facilitate	the	creation,	upgrade,	and	downgrade	of	your
database.	You	can	also	use	the	automatically	generated	version	history	to	keep	track	of
changes	and	stay	in	sync	with	the	rest	of	your	development	team.

We	have	previously	set	up	migrations	in	our	sample	project	to	get	the	ball	rolling.	In	this
section,	we	will	add	a	new	migration	to	reflect	the	changes	we	made	in	this	chapter.

WOW! eBook
www.wowebook.org

Setting	up	migrations
The	following	is	a	recap	of	how	we	previously	set	up	our	migrations	for	EF.	Once	again,
keep	in	mind	that	your	DNX	version	may	vary:

1.	 Open	a	command	prompt	to	your	project	folder's	location.
2.	 Run	the	following	commands:

>dotnet	restore

>dotnet	build

>dotnet	ef	migrations	add	Initial

>dotnet	ef	database	update

The	preceding	commands	do	not	need	to	be	run	again,	as	your	initial	migration	has	already
been	created	back	in	Chapter	3	,	Understanding	MVC.	Instead,	we	will	run	additional
commands	to	create	a	new	migration	to	represent	the	changes	to	your	models	and	database
context.

WOW! eBook
www.wowebook.org

Adding	and	removing	migrations
When	you	add	a	new	migration,	several	things	will	happen:

A	new	class	file	will	be	generated	in	the	Migrations	folder,	below	the	initial	migration
file.	The	filename	will	usually	be	prefixed	with	a	date/timestamp,	followed	by	the	name
of	the	migration,	such	as	2016MMDDXXYY_RobotDoctors.cs.
The	contents	of	the	migration	file	will	contain	a	single	class	that	bears	the	name	of	the
migration,	such	as	RobotDoctors.	This	class	will	contain	two	methods,	Up()	and	Down(),
to	assist	in	the	upgrade	and	downgrade	of	the	database,	respectively.
An	auto-generated	snapshot	file	will	be	updated	to	reflect	the	current	state	of	the	database
models	and	relationships.	The	filename	will	typically	be	prefixed	with	the	name	of	the
database	context,	such	as	ApplicationDbContextModelSnapshot.cs.
After	the	update	command	has	been	run,	the	physical	database	will	be	updated	with	the
appropriate	changes.	If	the	changes	cannot	be	processed	successfully	for	some	reason,
one	or	more	error	messages	will	be	returned.

To	add	a	new	migration,	run	the	following	commands	in	a	command	prompt	within	the
project	folder's	location:

>dotnet	restore

>dotnet	build

>dotnet	ef	migrations	add	RobotDoctors

>dotnet	ef	database	update

This	generates	a	new	migration,	as	described	previously.	If	you	get	any	database	conflict
errors,	you	may	have	to	delete	records	in	you	Humans	table	first	and	then	rerun	the	database
updated	command.	You	can	now	inspect	the	database	to	check	for	the	new	changes.	To	find	the
database	quickly,	use	the	SQL	Server	Object	Explorer	panel	to	drill	down	to	your	database
and	inspect	the	tables	and	fields.

To	take	a	step	back,	you	can	use	the	remove	command	to	remove	the	previous	migration.	The
full	list	of	commands	is	as	follows:

add:	This	will	add	a	new	migration
apply:	This	will	apply	migrations	to	the	database
list:	This	will	display	a	list	of	migrations
script:	This	will	generate	a	list	of	SQL	scripts	without	actually	updating	the	database
remove:	This	will	remove	the	previous	migration

It	is	worth	noting	that	the	script	command	is	similar	to	a	script	parameter	in	previous	versions
of	EF.	Instead	of	hiding	this	feature	within	a	parameter	(and	possibly	risking	accidental
overwriting	of	your	database	if	you	forgot	to	include	it),	you	now	have	separate	commands	to
either	update	your	database	or	just	generate	SQL	scripts	without	changing	anything.

WOW! eBook
www.wowebook.org

Running	your	application
Now	that	you	have	completed	all	the	necessary	database	changes	with	the	use	of	a	new
migration,	you	are	ready	to	run	your	application.	Build	your	solution	and	run	the	application
from	Visual	Studio	2015.	This	should	launch	your	default	web	browser	with	the	main	Index
page	from	the	Home	controller,	as	shown	in	the	following	screenshot:

On	the	top	menu,	click	on	the	Humans	link	to	view	the	Index	page	of	the	Human	controller.
This	should	show	you	an	empty	list,	as	we	have	not	created	any	new	Humans	at	this	time.	If	you
already	created	your	own	entries	prior	to	reaching	this	step,	please	delete	your	entries	before
you	proceed.

The	following	screenshot	is	the	Index	page	of	the	Human	controller:

WOW! eBook
www.wowebook.org

To	ensure	that	we	have	some	sample	data,	open	the	RobotDoctors	table	and	add	a	few	entries
manually	into	the	database	using	the	SQL	Server	Object	Explorer	in	Visual	Studio.	The
following	screenshot	shows	some	sample	values	for	RobotDoctorId,	ModelNumber,	and
PreferredName:

RobotDoctorId	(auto) ModelNumber PreferredName

1 90210 Dr.	X

2 12345 Dr.	Chicago

We	could	write	some	additional	code	to	add	seed	data	to	your	database,	but	we	will	save	this
step	for	Chapter	7	,	Dependency	Injection	and	Unit	Testing	for	Robust	Web	Apps.	It	is	better	to
use	a	testing	framework	to	add	seed	data	instead	of	adding	it	to	your	application	code.

Back	in	your	web	browser,	click	on	the	Create	New	link	in	the	top-left	area	to	view	the
Create	view	for	HumanController.	Select	a	Robot	Doctor,	and	then	complete	and	submit	the
form	to	create	a	new	Human	entry.	If	there	are	any	validation	errors,	you	will	be	prompted	to
correct	them	before	the	submission	goes	through.	Once	submitted,	you	should	be	redirected
to	the	Index	page.	The	following	screenshot	shows	the	Create	view:

WOW! eBook
www.wowebook.org

On	the	Index	page	in	the	following	screenshot,	you	should	see	links	labeled	Edit,	Details,	and
Delete.	Let's	try	out	each	of	these	links	to	edit	an	entry,	view	the	details	of	an	entry,	or	delete
an	existing	entry:

WOW! eBook
www.wowebook.org

If	you	click	the	Edit	link,	you	should	now	see	the	editable	details	of	a	previously	added	entry,
as	shown	in	the	following	screenshot.	Change	a	few	values	and	submit	the	form.	Similar	to	the
creation	of	a	new	entry,	you	will	either	be	prompted	to	fix	any	validation	errors,	or	taken
back	to	the	Index	page	upon	submission:

WOW! eBook
www.wowebook.org

If	you	click	the	Details	link,	you	should	see	the	noneditable	details	of	a	previously	added
entry,	as	shown	in	the	following	screenshot.	You	have	the	choice	of	returning	to	the	Index
page	once	again	or	clicking	Edit	to	see	the	editable	view:

WOW! eBook
www.wowebook.org

If	you	click	the	Delete	link,	you	should	see	a	confirmation	page	asking	you	if	you	want	to
delete	the	entry,	as	shown	in	the	following	screenshot.	Click	on	the	Delete	button	to	proceed
or	return	to	the	Index	page:

WOW! eBook
www.wowebook.org

WOW! eBook
www.wowebook.org

Summary
In	this	chapter,	we	discussed	EF	Core,	which	is	a	modern	ORM	tool	for	web	applications	and
more.	For	the	purposes	of	this	book,	we	only	covered	EF	Core	as	it	pertains	to	ASP.NET
Core.	For	more	information	about	EF	Core,	you	may	check	out	the	official	documentation	at
https://ef.readthedocs.org	.

In	the	next	chapter,	you	will	cover	Dependency	Injection,	Inversion	of	Control,	and	Unit
Testing.	This	will	give	you	a	good	application-design	foundation	to	ensure	that	you	have
robust	testable	applications	that	can	be	easily	updated	with	confidence.

WOW! eBook
www.wowebook.org

https://ef.readthedocs.org

Chapter	7.		Dependency	Injection	and	Unit
Testing	for	Robust	Web	Apps
Inversion	of	Control	(IoC)	is	one	of	those	topics	that	tends	to	get	dismissed	by	some
developers	as	an	advanced	concept	that	they	may	never	need.	In	the	past,	developers	have	had
the	choice	of	either	rolling	out	their	own	code	or	using	one	of	the	many	IoC	containers	to
introduce	Dependency	Injection	(DI)	in	their	code.	With	ASP.NET	Core,	you	will	have	the
choice	of	using	the	built-in	DI	features	or	making	use	of	existing	IoC	containers	that	you	may
already	be	familiar	with.

In	this	chapter,	we	will	start	off	with	an	introduction	to	IoC	and	how	DI	can	help	you	build
better	applications.	We	will	implement	DI	in	a	sample	project	and	then	learn	the	benefits	of
unit	testing.	Finally,	we	will	wrap	up	with	various	DI	options	you	have	available	to	you	as	an
ASP.NET	Core	web	application	developer.

WOW! eBook
www.wowebook.org

Understanding	IoC
IoC	is	a	well-known	pattern	that	invents	the	control	of	how	dependent	objects	are	created
within	software	components.	Using	DI	allows	us	to	implement	IoC	in	our	software
applications.	Let's	take	a	look	at	an	actual	scenario	to	illustrate	what	this	means.

If	you	are	already	familiar	with	DI	and	IoC,	feel	free	to	skip	this	section	and	jump	right	into
the	code	in	the	next	section.	If	you're	not	familiar	with	this	topic,	or	have	not	had	a	chance	to
use	it	in	your	real-life	projects,	this	section	aims	to	help	you	become	more	comfortable	with
it.

WOW! eBook
www.wowebook.org

Pros	and	cons	of	DI
Both	experienced	developers	and	beginners	have	opinions	on	whether	DI	is	right	for	them	or
not.	As	a	result,	there	are	arguably	many	pros	and	cons	for	and	against	the	use	of	DI	and	IoC
in	your	projects.

Here	are	some	reasons	why	DI	is	a	good	choice:

Helps	with	adhering	to	the	Dependency	Inversion	Principle	(DIP)
Allows	objects	to	be	easily	swapped	with	replacements
Facilitates	the	use	of	the	Strategy	Design	Pattern	(SDP)
Improves	the	testability	of	applications
Enables	loose	coupling	of	software	components

For	more	information	on	DIP	and	the	Strategy	Pattern,	take	a	look	at	the	following
Wikipedia	articles:	https://en.wikipedia.org/wiki/Dependency_inversion_principle

https://en.wikipedia.org/wiki/Strategy_pattern

On	the	other	hand,	you	may	not	agree	due	to	the	following	reasons:

DI	introduces	a	learning	curve	for	some	developers
DI	may	require	a	significant	overhaul	of	existing	projects
Project	timelines	may	not	allow	DI

Let's	address	the	list	of	cons	first.	Every	technology	has	a	learning	curve	if	you're	not
accustomed	to	it.	Once	you	recognize	the	benefits,	it	will	make	the	extra	effort	worth	it.	If
your	project	requires	too	much	work	to	retrofit	DI	into	it,	you	may	be	happy	to	leave	the
architecture	as	is,	and	avoid	DI	for	that	particular	project.	Since	ASP.NET	Core	is	new,	you
have	the	luxury	of	starting	from	a	clean	slate,	and	it	also	makes	it	easier	to	start	off	with	DI.

As	for	the	list	of	pros,	the	benefits	may	not	be	immediately	clear,	so	the	terms	will	be
explained	in	more	detail	in	the	rest	of	this	chapter.

WOW! eBook
www.wowebook.org

https://en.wikipedia.org/wiki/Dependency_inversion_principle
https://en.wikipedia.org/wiki/Strategy_pattern

SOLID	principles	and	Gang	of	Four	patterns
You	may	not	be	familiar	with	SOLID	principles	and	the	so-called	Gang	of	Four	(GoF)
design	patterns.	To	realize	the	benefits	of	DI,	it	helps	to	have	some	knowledge	of	these
patterns	and	principles.

The	SOLID	principles	refer	to	the	following	principles	that	make	up	the	word	SOLID.	This
acronym	should	help	you	remember	the	list:

(S)ingle	Responsibility	Principle:	Each	class	should	only	be	responsible	for	one
primary	function.	This	encourages	better	class	naming	and	discourages	developers	from
making	a	class	more	than	it	needs	to.
(O)pen-Closed	Principle:	Objects	should	be	open	for	extension,	while	remaining	closed
for	modification.	This	encourages	the	creation	of	subclasses	for	added	functionality
without	breaking	existing	code.
(L)iskov	Substitution	Principle:	Objects	should	be	replaceable	with	appropriate	objects,
for	example,	other	objects	that	share	the	same	parent	class	or	common	interface.	This
enables	loose	coupling	of	related	objects.
(I)nterface	Segregation	Principle:	Instead	of	overusing	one	generic	interface,	it	is
better	to	have	more	interfaces,	well-suited	for	specific	purposes.	This	encourages	you	to
keep	each	interface	lightweight.
(D)ependency	Inversion	Principle:	Objects	should	be	decoupled	or	loosely	coupled.
This	forces	classes	to	depend	on	the	abstract	definition	of	another	object	instead	of	a
concrete	implementation.

Note

For	more	information	on	SOLID	principles,	there	are	plenty	of	reference	material,	blog
posts,	and	articles	online.	A	good	source	to	start	with	may	be	the	following	Wikipedia	page,
which	includes	links	to	more	detail	on	each	principle,	at:	
https://en.wikipedia.org/wiki/SOLID_(object-oriented_design).

GoF	design	patterns	refer	to	the	patterns	described	in	the	classic	book	Design	Patterns:
Elements	of	Reusable	Object-Oriented	Software,	written	by	Erich	Gamma,	Richard	Helm,
Ralph	Johnson,	and	John	Vlissides.	They	are	frequently	referred	to	as	the	Gang	of	Four.

There	are	a	total	of	23	design	patterns,	so	covering	all	of	them	is	way	beyond	the	scope	of
this	chapter,	but	it	is	worth	mentioning	the	Strategy	Pattern,	which	is	relevant	to	the	benefits	of
DI.	This	pattern	defines	a	design	that	dictates	interchangeable	objects,	which	can	be	followed
while	adhering	to	the	aforementioned	SOLID	principles.

WOW! eBook
www.wowebook.org

https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)

Loose	coupling
To	demonstrate	loose	coupling,	we	can	start	with	a	controller	with	an	action	method	that	is
responsible	for	a	complex	action.	Ideally,	our	controller	methods	should	be	as	lean	as
possible.	If	we	create	complex	objects	in	our	controller	methods	with	the	new	keyword,	these
methods	will	become	responsible	for	the	creation	of	those	objects.	In	other	words,	they	will
become	tightly	coupled	with	those	objects.

Here	is	a	code	snippet	that	shows	a	controller	method	using	a	complex	object:

public	class	MyController:	Controller	

{	

								public	MyComplexObject	ComplexObject	{	get;		set;	}		

	

								public	MyController()	

								{	

																ComplexObject	=	new	MyComplexObject();	

								}	

	

								public	IActionResult	MyActionMethod()	

								{	

																ComplexObject.GetStuffDone();	

								}	

}	

Here,	we	can	see	that	the	object	has	to	be	initialized	with	the	new	keyword	in	the	constructor.
This	creates	a	tightly-coupled	dependency	that	requires	the	controller	code	to	be	updated	if	we
need	to	swap	out	a	different	object.	In	order	to	avoid	such	a	dependency,	we	could	pass	in	an
object	that	has	already	been	initialized	elsewhere.	This	will	allow	us	to	call	the	methods	on
that	object	without	having	to	worry	about	creating	instances	of	it	and	disposing	of	them
afterward.	Here's	a	code	example:

public	class	MyController:	Controller	

{	

								public	MyComplexObject	ComplexObject	{	get;		set;	}		

	

								public	MyController(MyComplexObject	complexObject)	

								{	

																ComplexObject	=	complexObject;	

								}	

	

								public	IActionResult	MyActionMethod()	

								{	

																ComplexObject.GetStuffDone();	

								}	

}	

In	the	preceding	code,	the	object	is	already	being	passed	in	through	the	constructor,	so	we	can
call	its	methods	elsewhere	in	the	controller	class.	This	is	a	good	start,	but	we	can	improve	it
further	by	changing	the	method	parameter	from	a	class	to	an	abstracted	interface	instead:

WOW! eBook
www.wowebook.org

public	class	MyController:	Controller	

{	

								public	IMyComplexObject	ComplexObject	{	get;		set;	}		

	

								public	MyController(IMyComplexObject	complexObject)	

								{	

																ComplexObject	=	complexObject;	

								}	

	

								public	IActionResult	MyActionMethod()	

								{	

																ComplexObject.GetStuffDone();	

								}	

}	

Now,	the	constructor	can	accept	any	concrete	class	that	implements	the	expected	interface.	But
how	will	this	object	get	initialized	before	it's	passed	in?	That's	where	IoC	containers	come	in.
To	get	going,	we	will	look	at	an	example	of	the	minimalistic	built-in	DI	container	that	is
provided	with	ASP.NET	Core.

WOW! eBook
www.wowebook.org

Implementing	DI	in	ASP.NET	Core
Before	we	proceed,	you	may	be	surprised	to	know	that	we	already	have	DI	in	the	sample
project	that	we	have	been	working	with	in	earlier	chapters.	Take	a	look	at	the	Startup.cs	file
in	your	web	project	folder.	You	should	see	the	following	code	near	the	end	of	the
ConfigureServices()	method:

services.AddTransient<IEmailSender,	AuthMessageSender>();	

services.AddTransient<ISmsSender,	AuthMessageSender>();	

This	code	adds	a	couple	of	instances	of	the	AuthMessageSender	service	class,	which
implements	both	the	IEmailSender	and	ISmsSender	interfaces.	The	code	for	this	class	and	its
interfaces	can	be	found	in	the	Services	subfolder	of	your	project,	as	shown	in	the	following
screenshot:

The	call	to	AddTransient	ensures	that	the	object	is	properly	created	and	destroyed,	so	that	you
don't	have	to	worry	about	instantiation	and	disposal.	There	are	multiple	ways	to	indicate	what
kind	of	life	cycle	you	want.	Life	cycle	management	is	an	integral	part	of	using	DI	in	your
application.

Using	our	Patient	Records	project	from		Chapter	6	,	Using	Entity	Framework	to	Interact	with
Your	Database	in	Code,	let's	add	a	new	service	called	ApptService	to	help	us	make
appointments	for	our	fictitious	hospital:

1.	 Right-click	the	Services	folder	in	Solution	Explorer.
WOW! eBook

www.wowebook.org

2.	 Select	Add	|	Class	from	the	pop-up	menu.
3.	 Name	your	class	ApptService.cs:

Next,	add	a	method	to	simulate	the	scheduling	of	an	appointment.	For	simplicity's	sake,	the
following	sample	code	returns	true	to	indicate	that	the	appointment	was	scheduled
successfully:

public	class	ApptService	

{	

				public	bool	ScheduleAppt()	

				{	

								bool	isSuccess	=	false;	

								//	scheduling	code	goes	here	

								isSuccess	=	true;	

								return	isSuccess;	

				}	

}	

Next,	extract	an	interface	from	this	service	class.	You	could	create	another	class	file	and	name
it	IApptService,	but	it	is	easier	to	let	Visual	Studio	2015	do	the	extra	work:

1.	 In	ApptService.cs,	right-click	the	name	of	the	class.
2.	 Choose	Quick	Actions...	in	the	pop-up	menu	that	appears.
3.	 Choose	Extract	Interface	in	the	next	pop-up	menu.
4.	 In	the	dialog	box	that	appears,	leave	the	defaults	and	click	OK:

WOW! eBook
www.wowebook.org

If	Visual	Studio	doesn't	automatically	add	the	new	interface	to	your	Services	folder,	you	may
have	to	locate	it	within	the	project's	root	folder	in	Solution	Explorer.	If	the	IApptService.cs
file	is	not	in	your	Services	folder,	you	should	drag	it	into	the	Services	folder	manually:

WOW! eBook
www.wowebook.org

You	should	now	have	a	new	interface	and	service	class	in	your	Services	folder.	We	are	now
ready	to	instantiate	the	service	class	and	make	use	of	it.	We	need	to	choose	a	lifetime	for	the
object	when	we	set	up	its	DI.	We	will	make	use	of	it	by	injecting	it	inside	a	controller	class.

WOW! eBook
www.wowebook.org

Lifecycle	management
In	order	to	manage	your	dependency's	lifecycle	in	ASP.NET,	here	is	a	list	of	lifetimes	you	can
choose	from:

Transient:	A	new	instance	will	be	created	each	time	the	object	is	needed
Scoped:	A	new	instance	will	be	created	for	each	web	request
Singleton:	A	new	instance	will	be	created	only	once	at	application	startup
Instance	(special	case	of	Singleton):	Use	AddSingleton()	and	create	an	instance
yourself

In	each	case,	the	object	will	be	disposed	only	after	it	is	no	longer	needed.	To	use	one	or	more
lifetime	settings,	you	would	typically	add	the	your	code	to	the	ConfigureServices()	method
of	your	Startup.cs	file.	This	is	explained	in	more	detail	later	in	this	chapter.

WOW! eBook
www.wowebook.org

Constructor	injection	versus	action	injection
When	you	inject	a	dependency	through	the	constructor,	this	method	is	known	as	constructor
injection.	If	you	inject	it	in	an	action	method,	that	is	known	as	action	injection.	You	can	use
either	approach	in	your	application.

First,	let's	add	a	new	controller	to	manage	the	hospital's	activities.	Create	a	new
HospitalController	class	in	the	Controllers	subfolder:

1.	 Right-click	the	Controllers	subfolder	in	Solution	Explorer.
2.	 In	the	pop-up	menu,	click	Add	|	New	Item.
3.	 Add	a	new	Class	named	HospitalController.cs.

The	following	screenshot	shows	the	creation	of	HospitalController.cs:

To	use	constructor	injection,	let's	add	a	reference	to	our	controller's	constructor.	For	this
option,	add	the	following	code	to	the	body	of	the	HospitalController	class:

public	IApptService	ApptService	{	get;	set;	}	

public	HospitalController(IApptService	apptService)	

{	

				ApptService	=	apptService;	

}	

WOW! eBook
www.wowebook.org

In	order	to	use	the	aforementioned	service	class,	make	sure	you	add	the	proper	using
statement	to	the	top	of	the	class:

using	PatientRecords.Services;	

To	use	action	injection,	the	injection	is	performed	within	the	parameter	section	of	your
controller's	action	method:

public	IActionResult	ActionMethod([FromServices]	IApptService	apptService)	

{	

				ViewData["Message"]	=	"Scheduled:	"	+	apptService.ScheduleAppt();	

	

				return	View();	

}	

If	you	happen	to	read	older	blog	posts	or	outdated	documentation,	it	may	be	useful	to	know
that	earlier	pre-release	versions	of	ASP.NET	Core	allowed	setter	injection	to	inject	a
dependency	at	the	property	level.

Once	again,	make	sure	you	include	proper	using	statements	above	the	class	definition:

using	Microsoft.AspNetCore.Mvc;	

using	PatientRecords.Services;	

The	first	using	statement	ensures	that	we	will	be	able	to	use	the	[FromServices]	attribute
(among	other	things).	The	second	using	statement	ensures	that	we	can	use	the	IApptService
interface	class.

Finally,	let's	add	a	controller	action	method	to	call	our	service	class.	Add	the	following	code
below	the	constructor	of	our	HospitalController	class:

public	string	ProcessAppointment()	

{	

				bool	isSuccess	=	ApptService.ScheduleAppt();	

				if	(isSuccess)	

								return	"Success!";	

				else	

								return	"Failed...";	

}	

For	simplicity,	the	preceding	code	returns	a	string	value	instead	of	an	actual	view.	But	if	we
were	to	run	the	application	now	and	invoke	the	new	controller	method,	we	would	get	an	error
message.	The	error	message	would	be	something	like	the	following:

An	unhandled	exception	occurred	while	processing	the	request.

InvalidOperationException:	Unable	to	resolve	service	for	type	

'PatientRecords.Services.IApptService'	while	attempting	to	activate	

'PatientRecords.Controllers.HospitalController'.

This	error	occurs	because	we	still	haven't	told	the	DI	engine	how	to	create	our	service	object.
To	fix	this	problem,	we	need	to	update	our	Startup.cs	file	and	use	the	following	line	of	code

WOW! eBook
www.wowebook.org

at	the	bottom	of	the	ConfigureServices()	method,	as	seen	in	the	sample	code	for	this	project:

services.AddTransient<IApptService,	ApptService>();	

You	can	add	the	preceding	line	below	the	existing	calls	to	services.AddTransient	in	the
sample	application.	Make	sure	you	add	an	interface	file	for	IApptService	that	will	be
implemented	by	the	ApptService	class.	Your	application	is	now	ready	for	some	quick	testing.

WOW! eBook
www.wowebook.org

Verifying	the	expected	behavior
Run	the	application	then	manually	invoke	the	controller	method	by	typing	in	the	controller
name	and	method	name	in	your	web	browser.

http://localhost:12345/Hospital/ProcessAppointment	

Your	port	number	may	vary,	but	the	rest	of	the	URL	should	be	similar	to	the	preceding	URL.
You	should	now	see	a	Success!	message,	as	shown	in	the	following	screenshot.	You	may
recall	that	our	service	method	has	been	hard-coded	to	always	return	a	successful	result.	If	you
wish	to	test	out	an	unsuccessful	result,	you	can	edit	the	method	in	your	service	class	to	return
false	instead	of	true:

Congratulations!	You	have	now	successfully	set	up	DI	in	ASP.NET	Core	with	the	built-in	IoC
features.

In	order	to	test	the	remaining	life	cycle	options	for	the	injected	service	object,	we	can	replace
the	call	to	AddTransient()	in	our	ConfigureServices()	method	in	the	Startup.cs	class.	Try
using	the	following	options	to	swap	out	the	single	line	of	code	with	another.	Do	not	use	more
than	one	of	the	following	options:

//	Option	1:	Transient	

services.AddTransient<IApptService,	ApptService>();	

//	Option	2:	Scoped	

//services.AddScoped<IApptService,	ApptService>();	

//	Option	3:	Singleton	

//services.AddSingleton<IApptService,	ApptService>();	

//	Option	4:	Instance	(Singleton,	with	explicit	instance)	

//services.AddSingleton<IApptService>(new	ApptService());	

WOW! eBook
www.wowebook.org

Note	that	each	of	the	options	displays	very	similar	syntax,	and	they	all	make	use	of	both
IApptService	and	ApptService.	However,	the	last	call	to	AddSingleton()	is	different	from
the	rest.	With	this	option,	we	are	responsible	for	creating	the	instance	ourselves,	so	we	need	to
use	the	new	keyword	in	this	case.	Based	on	the	requirements	of	your	application,	you	can	use
one	of	the	preceding	options	to	set	the	life	cycle	of	your	service	object.

WOW! eBook
www.wowebook.org

DI	options	in	ASP.NET	Core
When	it	comes	to	DI,	you	have	a	few	choices	to	select	from.	When	it	comes	to	DI	in	ASP.NET
Core,	you	already	know	that	you	have	the	benefit	of	selecting	from	the	built-in	IoC	container.

But	what	other	options	do	you	have	and	how	should	you	decide	when	to	select	one	over
another?

WOW! eBook
www.wowebook.org

Built-in	IoC
If	you're	just	getting	started	with	ASP.NET	Core,	I	would	highly	recommend	going	with	the
simplest	choice	for	DI.	Go	with	what's	included	out-of-the-box.	If	you're	especially	new	to	DI
and	IoC	containers,	you	should	definitely	stick	with	the	default	IoC	container.

If	you're	already	very	familiar	with	other	alternatives,	you	could	start	with	what	you	know.
For	example,	if	you	have	used	Autofac	extensively	as	your	IoC	container	in	past	projects,
you	may	want	to	stick	with	Autofac	for	new	ASP.NET	Core	projects.

WOW! eBook
www.wowebook.org

Autofac
Autofac	is	already	used	by	many	ASP.NET	developers,	and	was	available	for	ASP.NET	Core
long	before	its	official	release.	In	this	section,	we	will	take	a	look	at	how	we	can	use	Autofac
in	our	project.

Create	a	new	standard	web	project	and	add	the	following	references	to	Autofac	in	your
application's	project.json	file,	in	the	dependencies	section:

"Autofac":	"4.0.0-rc3-316",	

"Autofac.Extensions.DependencyInjection":	"4.0.0-rc3-309"	

The	two	references	to	the	main	Autofac	package	and	its	DI-specific	package	will	get	you
started.	As	with	other	references	in	your	configuration	file,	your	version	numbers	may	vary.

Next,	update	your	ConfigureServices()	method	in	your	Startup.cs	file	to	initialize	Autofac
as	needed.	You	may	have	noticed	that	this	method	returns	void	in	a	newly	created	web	project.
In	order	to	use	Autofac,	you	should	change	the	return	type	to	IServiceProvider.

Update	your	ConfigureServices()	method	to	return	an	IServiceProvider	and	add	the
following	block	of	code:

public	IServiceProvider	ConfigureServices(IServiceCollection	services)	

{	

				//	other	code	in	method	

	

				//	Prepare	Autofac	

				var	containerBuilder	=	new	ContainerBuilder();	

				containerBuilder.RegisterModule<DefaultModule>();	

				containerBuilder.Populate(services);	

				var	container	=	containerBuilder.Build();	

				return	container.Resolve<IServiceProvider>();	

}	

In	order	for	the	preceding	code	to	work,	make	sure	you	add	the	proper	using	statements	to	the
top	of	your	Startup.cs	class:

using	Autofac;	

using	Autofac.Extensions.DependencyInjection;	

The	first	using	statement	allows	you	to	use	Autofac	in	your	code,	as	you	would	expect.	The
second	using	statement	brings	in	additional	extension	methods	such	as	the	Populate	method.

So	what	is	all	this	code	doing?	Autofac	is	being	set	up	in	five	lines	of	code:

1.	 First,	a	new	ContainerBuilder	object	is	created.	This	is	Autofac's	DI	container,	which
has	methods	in	it	to	register	service	modules.

2.	 Next,	we	are	registering	a	module	that	will	contain	the	instructions	for	service	objects
that	need	to	be	created.	You	may	notice	that	an	undefined	module	named

WOW! eBook
www.wowebook.org

DefaultModule	is	being	registered,	but	we	have	yet	to	create	this	module.	We'll	take	care
of	it	shortly.

3.	 With	a	call	to	the	Populate()	method	of	ContainerBuilder,	it	passes	in	the	services
object,	which	has	already	been	set	up	earlier	in	the	method.

4.	 Before	we	return,	a	call	to	the	Build()	method	of	ContainerBuilder	will	create	a	new
container	using	the	components	that	have	just	been	registered.

5.	 Finally,	we	can	return	the	service	provider	to	kick	things	off.

Now,	let's	take	care	of	creating	the	module	that	the	preceding	code	is	attempting	to	register:

1.	 Right-click	the	web	project	in	Solution	Explorer.
2.	 Click	Add	|	New	Folder	in	the	pop-up	menu.
3.	 Name	this	folder	DependencyInjection	(for	convenience).
4.	 Right-click	the	new	folder	you	just	created.
5.	 Click	Add	|	Class	to	create	a	new	class.
6.	 Name	your	class	DefaultModule.cs.

The	following	screenshot	shows	the	creation	of	DefaultModule.cs:

Replace	the	contents	of	this	new	class	with	the	following	code:

public	class	DefaultModule:	Module	

{	

WOW! eBook
www.wowebook.org

				protected	override	void	Load(ContainerBuilder	builder)	

				{	

								builder.RegisterType<SomeClass>().As<ISomeInterface>();	

				}	

}	

Note	that	we	are	deriving	DefaultModule	from	Module	and	overriding	its	Load()	method.	In
order	for	this	code	to	work,	we	must	add	the	following	using	statements	to	the	top	of	the
class:

using	Autofac;	

using	Autofac.Extensions.DependencyInjection;	

In	the	call	to	RegisterType(),	there	is	a	placeholder	class	called	SomeClass	and	a	placeholder
interface	called	ISomeInterface.	You	should	replace	these	with	a	class	and	an	interface	that
you	would	like	Autofac	to	resolve	for	use	in	your	code.	In	fact,	you	can	use	IApptService	and
ApptService	from	the	example	used	earlier	in	this	chapter.	Just	make	sure	you	include	a	using
statement	that	includes	the	namespace	for	your	service	classes.

WOW! eBook
www.wowebook.org

Other	alternatives
If	you	would	like	to	explore	other	alternatives,	take	a	look	at	the	following	IoC	containers
available	for	.NET.	Make	sure	you	read	each	provider's	documentation	to	ensure	that	their
packages	are	appropriate	for	the	latest	version	of	ASP.NET	Core	and	MVC:

StructureMap:	http://structuremap.github.io
Ninject:	http://www.ninject.org
Castle	Windsor:	http://www.castleproject.org/projects/windsor
Unity:	https://github.com/unitycontainer/unity

You	may	also	use	IntelliSense	in	your	project.json	file	to	determine	the	latest	Stable/Beta
version	available	through	NuGet.

WOW! eBook
www.wowebook.org

http://structuremap.github.io
http://www.ninject.org
http://www.castleproject.org/projects/windsor
https://github.com/unitycontainer/unity

Writing	unit	tests
In	addition	to	DI,	it	is	also	important	to	write	unit	tests	to	build	robust	software.	By	automating
your	tests,	you	can	minimize	the	chances	of	bugs	in	your	code	and	generate	confidence	when
adding	new	features.

Many	articles	and	a	few	books	have	been	written	on	unit	testing,	so	this	section	is	by	no	means
a	comprehensive	reference	on	it.	Instead,	its	intent	is	to	introduce	you	to	the	possibilities	of
automated	testing	in	your	code.

WOW! eBook
www.wowebook.org

Setting	up	a	test	project
ASP.NET	developers	have	been	using	various	unit	testing	frameworks	over	the	years.	The	list
of	testing	frameworks	includes	nUnit,	xUnit.net,	and	Microsoft's	own	MSTest.	All	of	these
products	have	the	same	basic	capabilities	and	some	advanced	capabilities	as	well.	To	extend
the	functionality,	developers	can	use	mocking	frameworks	such	as	Moq	(pronounced	Mock-
You	or	Mock).

Since	the	introduction	of	ASP.NET	Core	through	various	Beta	versions,	xUnit.net	has	been
made	available	and	is	ready	for	use.	Although	MSTest	was	not	initially	available	during	early
betas,	the	ASP.NET	team	announced	MSTest	in	the	RC2	version	of	ASP.NET	Core.	In	this
chapter,	we	will	cover	xUnit.net	for	our	unit	testing	samples.

Tip

If	you	are	interested	in	comparing	the	syntax	of	xUnit.net	with	its	alternatives,	take	a	look	at
the	comparison	chart	available	on	GitHub	at		https://xunit.github.io/docs/comparisons.html.

To	set	up	xUnit.net	for	your	project,	we	should	create	a	new	project	in	our	solution,	just	for
our	test	code.	Although	this	is	not	technically	required,	it	is	good	practice	to	separate	the	test
code	from	the	application	code.	The	test	project	will	have	a	reference	to	the	application
project,	but	the	application	project	should	not	have	any	knowledge	of	the	test	project.

You	could	create	a	new	folder	for	your	test	project:

1.	 Right-click	your	solution	in	Solution	Explorer.
2.	 Click	Add	|	New	Solution	Folder	in	the	pop-up	menu.
3.	 Name	your	new	folder	test,	as	shown	in	the	following	screenshot:

WOW! eBook
www.wowebook.org

https://xunit.github.io/docs/comparisons.html

To	create	a	test	project,	follow	these	steps:

1.	 Right-click	your	test	folder.
2.	 Click	Add	|	New	Project	in	the	pop-up	menu.
3.	 Choose	Class	Library	(.NET	Core)	for	the	project	type.
4.	 Enter	PatientRecords.Tests	as	the	project	name,	as	shown	in	the	following	screenshot:

WOW! eBook
www.wowebook.org

Note	that	the	name	of	the	test	project	does	not	have	to	include	the	name	of	your	application
project.	However,	it	is	a	common	convention	to	start	with	the	app	project	name	when	naming
the	test	project,	then	end	with	.Test	or	.Tests.

To	include	the	proper	references	in	our	test	project,	edit	your	project.json	file	from	within
your	test	project.	Make	sure	that	you	have	opened	this	configuration	file	from	the	test	project
and	not	the	app	project,	to	make	the	following	changes.

In	the	"dependencies"	section	of	the	project.json	file,	add	references	to	xunit,
xunit.runner.dnx,	and	your	web	project:

"dependencies":	{	

		"xunit":	"2.2.0-beta2-build3300",	

		"dotnet-test-xunit":	"2.2.0-preview2-build1029",	

		"PatientRecords":	"1.0.0-*"	

},	

The	first	xunit	reference	allows	you	to	use	xunit	in	your	test	project,	while	the	runner
reference	allows	you	to	run	the	unit	tests	from	a	command	line	or	from	within	Visual	Studio.
Finally,	the	reference	to	PatientRecords	is	a	reference	to	your	web	application	project,	and
may	vary	depending	on	how	you	named	your	project.	Once	again,	your	version	numbers	may
vary	so	you	should	use	IntelliSense	popups	while	typing	to	decide	which	Beta/Stable	version
may	be	suitable	for	your	project.

WOW! eBook
www.wowebook.org

Just	below	the	project	version	number,	identify	xunit	as	your	test	runner:

"testRunner":	"xunit",	

The	new	project	should	already	have	a	placeholder	class	in	it.	To	create	your	first	test	class,
you	could	rename	the	placeholder	class	name	and	its	filename.	You	could	also	delete	the
placeholder	class	and	create	a	new	class	instead.

To	create	a	new	test	class,	follow	these	steps:

1.	 Right-click	your	test	project	in	Solution	Explorer.
2.	 Click	Add	|	Class	in	the	pop-up	menu.
3.	 Name	the	test	class	HospitalServiceTests.cs,	as	shown	in	the	following	screenshot:

In	order	to	write	your	first	unit	test,	you	need	to	add	a	using	statement	to	make	use	of
xUnit.net.	Add	the	following	using	statement	to	the	top	of	your	test	class:

using	Xunit;	

Next,	add	the	following	placeholder	method	in	your	test	class:

[Fact]	

public	void	VerifySuccess()	

{	

				bool	isSuccess	=	false;	

WOW! eBook
www.wowebook.org

				isSuccess	=	true;	

				Assert.True(isSuccess);	

}	

In	the	preceding	code,	the	[Fact]	attribute	identifies	the	method	as	a	test	method	without	any
parameters.	The	public	keyword	ensure	that	the	test	can	be	called	from	outside	the	assembly,
by	test	runners	and	continuous	integration	systems.	The	call	to	Assert.True()	will	verify
whether	the	isSuccess	variable	is	set	to	true	or	not.	For	simplicity,	we	are	hard-coding	its
value.	You	are	now	ready	to	run	this	sample	test.

WOW! eBook
www.wowebook.org

Running	unit	tests
We	can	run	our	unit	tests	from	with	in	Visual	Studio	2015	or	from	a	command	line.	To	run
your	tests	from	within	a	Visual	Studio,	make	sure	the	Test	Explorer	panel	is	open	and	visible.
To	run	your	tests	from	a	command	line,	you	must	open	a	command	prompt	window	and	run
the	commands	at	the	project's	folder.

To	use	the	Test	Explorer	from	Visual	Studio	2015,	follow	these	steps:

1.	 In	the	top	menu,	click	Test	|	Windows	|	Test	Explorer.
2.	 Verify	that	the	Test	Explorer	panel	is	visible	in	Visual	Studio.
3.	 In	the	top	menu,	click	Build	|	Build	Solution.
4.	 Verify	that	your	unit	test	appears	in	the	Test	Explorer	panel.
5.	 Click	on	Run	All	in	the	Test	Explorer	panel.
6.	 Verify	that	your	test	has	passed	successfully,	as	shown	in	the	following	screenshot:

To	use	a	command	prompt	to	run	the	test,	follow	these	steps:

WOW! eBook
www.wowebook.org

1.	 Open	a	command	prompt	window.
2.	 Change	the	current	directory	to	point	to	the	test	project	folder.
3.	 Enter	the	following	command	to	run	your	sample	test:

>dotnet	test

This	command	will	trigger	the	test	system	to	discover	your	unit	tests,	and	run	all	available
tests.	Once	the	tests	have	been	run,	you	should	see	a	test	execution	summary	that	identifies	the
number	of	tests,	how	many	succeeded,	and	how	many	failed,	as	shown	in	the	following
screenshot:

If	you	want	to	include	parameters	in	your	unit	test	methods,	you	can	use	the	[Theory]	and
[InlineData]	attributes	together	to	replace	the	[Fact]	attribute.	The	parameters	passed	in	the
attributes	should	match	the	parameters	in	the	test	method	signature.

To	include	parameters,	add	the	following	method	to	your	test	class:

[Theory]	

[InlineData(7,	5)]	

public	void	VerifySuccessWithParams(int	n1,	int	n2)	

{	

				Assert.True(n1	>	n2);	

}	

Here,	the	[Theory]	attribute	defines	the	test	method	to	accept	some	test	data	as	parameters.
The	[InlineData]	attribute	accepts	one	or	more	parameters	that	match	the	test	method's
parameters.	The	Assert	statement	can	take	many	forms,	so	you	can	discover	its	various
features	by	typing	in	a	period	after	the	word	Assert,	and	observing	the	list	of	possible
methods	you	can	call	on	it.	In	this	case,	we	are	verifying	that	the	number	n1	is	greater	than	n2.

Finally,	let's	take	a	look	at	how	you	can	call	your	application's	methods	to	test	out	your
application	code.	Add	the	following	using	statement	to	your	test	class:

using	PatientRecords.Services;	

WOW! eBook
www.wowebook.org

Next,	add	the	following	method	to	your	test	class:

[Fact]	

public	void	VerifyApptService()	

{	

				ApptService	apptService	=	new	ApptService();	

				var	isSuccess	=	apptService.ScheduleAppt();	

				Assert.True(isSuccess);	

}	

This	test	method	is	responsible	for	creating	a	new	instance	of	the	ApptService	class,	after
which	it	calls	the	ScheduleAppt()	method.	Depending	on	what	is	returned	by	the	application
code,	the	test	with	either	pass	or	fail.

Whether	your	test	method	is	a	[Fact]	or	a	[Theory],	you	may	want	to	temporarily	skip	the
test	for	some	reason.	It	may	be	because	the	test	is	failing	and	you	need	some	extra	time	to
troubleshoot	it.	In	order	to	skip	a	test	method,	you	may	use	the	Skip	parameter	and	provide	a
reason:

[Fact(Skip	=	"skip	this	for	now")]	

[Theory(Skip	=	"skip	this	too")]	

The	next	time	you	run	all	your	tests,	any	test	methods	marked	with	this	parameter	will	be
skipped	in	that	test	run.	Keep	in	mind	that	this	practice	should	not	be	used	to	hide	your	test
methods	for	long	periods	of	time.	If	some	tests	are	being	skipped	for	any	period	of	time,	you
should	figure	out	a	way	to	fix	the	tests	if	necessary.	If	the	tests	have	become	obsolete	or
irrelevant,	you	should	consider	deleting	them	instead	of	skipping	them	every	time.

WOW! eBook
www.wowebook.org

Going	beyond	the	basics
Before	wrapping	up	this	section,	it	is	important	to	mention	that	there	is	more	to	automated
testing	than	just	the	basic	unit	tests	covered	in	this	chapter.	Earlier	in	this	section,	there	was	a
brief	mention	of	alternative	frameworks,	such	as	nUnit	and	MSTest.	If	you	have	the	time	to
learn	more,	take	a	look	at	what	else	is	available	before	you	decide	which	testing	framework	is
right	for	your	project.

If	you	also	choose	to	use	the	Moq	mocking	framework,	you	can	use	it	along	with	existing
testing	frameworks	such	as	xUnit.net.	In	the	earlier	testing	example,	you	could	have	replaced
the	concrete	class	with	an	abstract	interface,	which	will	allow	you	to	replace	the	interface	with
mock	objects.	Mocking	frameworks	is	beyond	the	scope	of	this	book,	but	you	can	learn	more
about	Moq	on	the	product's	GitHub	page	at	https://github.com/Moq	.

At	a	minimum,	you	should	be	aware	of	the	varieties	of	mocked	objects	you	can	create	in	your
test	project:	Mocks,	Fakes,	and	Stubs:

Mocks	are	pre-programmed	with	the	expected	results,	don't	actually	connect	to	a	real
database,	but	can	be	used	for	behavior	verification
Fakes	are	working	examples,	but	not	production-ready	(for	example,	an	in-memory
database)
Stubs	are	placeholders	that	provide	canned	answers,	which	are	useful	for	specific	limited
scenarios

If	these	terms	are	entirely	clear	to	you,	you	should	refer	to	Martin	Fowler's	classic	write-up
of	Mocks,	Fakes,	and	Stubs	at	http://martinfowler.com/articles/mocksArentStubs.html	.

WOW! eBook
www.wowebook.org

https://github.com/Moq
http://martinfowler.com/articles/mocksArentStubs.html

Summary
In	this	chapter,	we	discussed	IoC,	DI,	and	unit	testing.	We	covered	multiple	ways	of
implementing	DI	in	an	ASP.NET	Core	project	and	then	learned	the	basics	of	unit	testing	in
ASP.NET	Core.

If	you	want	to	learn	more	about	DI	and	IoC	containers,	a	great	place	to	start	is	a	classic	article
on	the	topic	by	software	engineer	and	public	speaker	Martin	Fowler	at
http://www.martinfowler.com/articles/injection.html	.

In	the	next	chapter,	we	will	cover	authentication,	authorization,	and	security	in	ASP.NET	Core
web	applications.

WOW! eBook
www.wowebook.org

http://www.martinfowler.com/articles/injection.html

Chapter	8.		Authentication,	Authorization,	and
Security
Authentication,	authorization,	and	security	are	all	important	topics	to	be	aware	of	when	it
comes	to	building	secure	web	applications.	There	is	a	lot	to	cover,	so	we	will	focus	on	what's
important	and	relevant	to	ASP.NET	Core	web	apps.

But	first,	let's	define	these	three	terms:

Authentication:	Instead	of	allowing	any	website	visitor	to	access	your	web	application,
you	can	use	authentication	to	restrict	who	can	use	your	application.	This	can	be	useful
for	any	application	that	needs	to	identify	each	user	before	allowing	any	interaction	with
it.
Authorization:	Once	inside	your	application,	you	can	use	authorization	to	restrict
specific	parts	of	the	application.	This	can	be	useful	for	allowing	some	users	to	perform
some	tasks	not	accessible	to	other	users,	for	example,	administrative	tasks,	editing	of
data,	and	so	on.
Security:	In	this	context,	the	term	security	refers	to	security	vulnerabilities	that	may
affect	web	applications.	This	can	include,	but	is	not	limited	to	Anti-Request	Forgery,
Cross-Site	Scripting,	and	SQL	Injection.

WOW! eBook
www.wowebook.org

Enabling	authentication	in	ASP.NET
You	may	be	pleased	to	hear	that	ASP.NET	Core	includes	built-in	authentication	methods	in	its
web	template.	In	fact,	creating	the	sample	projects	mentioned	in	previous	chapters	will	result
in	a	functioning	web	application	with	authentication	included.	If	you	start	a	brand	new	project,
this	section	will	also	help	you	identify	what	you	need	to	do	to	include	authentication.

WOW! eBook
www.wowebook.org

High-level	overview
Here	is	a	high-level	overview	of	how	you	can	enable	authentication	in	a	new	ASP.NET	Core
application	using	the	web	template:

1.	 Create	a	new	project	with	a	web	template.
2.	 Select	the	authentication	method.
3.	 Verify	the	packages	and	references.
4.	 Verify	the	code	in	the	Startup.cs	class.
5.	 Add	additional	identity	options	as	needed.
6.	 Add	external	providers	as	needed.

If	you	want	to	start	with	an	empty	project,	you	can	perform	the	following	steps:

1.	 Create	a	new	empty	web	project.
2.	 Do	not	select	an	authentication	method.
3.	 Add	packages	and	references	for	authentication.
4.	 Add	code	to	the	Startup.cs	class.
5.	 Add	additional	identity	options	as	needed.
6.	 Add	external	providers	as	needed.

For	obvious	reasons,	it	is	much	easier	to	start	with	a	web	template.	Note	the	differences	in	the
two	preceding	lists.	If	you	decide	to	start	with	an	empty	web	template,	you	will	have	to	do
more	work	to	get	things	up	and	running	with	authentication.

When	you	choose	a	project	type,	Visual	Studio	displays	a	dialog	box	that	includes	a	button
labeled	Change	Authentication	in	the	right	panel,	as	shown	in	the	following	screenshot:

WOW! eBook
www.wowebook.org

If	you	click	the	Change	Authentication	button,	Visual	Studio	will	display	another	dialog	box
that	displays	the	following	options:

No	Authentication:	This	is	self-explanatory.	Your	project	won't	include	any
authentication	automatically,	and	so	should	work	for	web	applications	that	don't	require
any	authentication.	If	you	choose	to	add	it	later,	you	will	have	to	take	additional	steps	to
add	it	manually.
Individual	User	Accounts:	This	is	quite	useful	for	a	starter	web	project.	All	user	data	is
stored	in	the	application	database	and	can	be	accessed	using	the	ASP.NET	Core
framework.	Note	that	ASP.NET	Identity	has	shifted	away	from	Windows	Identity
Foundation	in	ASP.NET	Core.
Work	and	School	Accounts:	This	option	includes	organizational	accounts	such	as
corporate	or	education	institutional	accounts	that	use	Windows	Server	Active	Directory
or	Azure	Active	Directory.
Windows	Authentication:	This	option	is	well	suited	to	applications	that	will	be	used	in
an	intranet	environment,	where	the	credentials	on	a	Windows	computer	will	be	used	to
authenticate	the	user	on	a	web	application.

WOW! eBook
www.wowebook.org

In	this	chapter,	we	will	cover	the	authentication	process	using	Individual	User	Accounts.

WOW! eBook
www.wowebook.org

Authentication	configuration
By	using	the	Hospital	Records	project	from	prior	chapters,	you	should	already	have	a
functional	web	project	with	the	proper	authentication	method	selected	by	default.	Pay	attention
to	the	following	verification	steps	to	identify	what	you	would	need	if	you	use	an	empty
template	for	a	future	web	project.

In	your	project.json	file,	verify	that	you	have	a	reference	to	the
Microsoft.AspNetCore.Identity.EntityFrameworkCore	package,	as	shown	in	the	following
screenshot:

This	EF-specific	Identity	package	has	a	couple	of	other	dependencies	that	you	can	see	in	the
list	of	references	in	the	Solution	Explorer	panel.	The	dependencies	include	these	additional
packages:

Microsoft.AspNetCore.Identity
Microsoft.EntityFrameworkCore.Relational

The	Relational	package	pulls	in	the	Core	package	for	EntityFramework	as	a	dependency,
while	the	ASP.NET	Identity	package	includes	what	we	need	to	use	authentication	in	our
project.	Entity	Framework	will	be	used	to	interact	with	the	database,	where	our	user
credentials	will	be	stored	in	a	table	named	AspNetUsers.

To	complete	the	configuration,	the	Startup.cs	class	needs	the	proper	code	to	add	and	use
authentication.	As	you	may	have	guessed,	this	code	will	go	into	the	ConfigureServices()	and
Configure()	methods	respectively.

In	the	ConfigureServices()	method	of	your	Startup	class,	verify	that	the	following	code	is
there	to	enable	the	use	of	the	Identity	features	of	ASP.NET	Core:

services.AddIdentity<ApplicationUser,	IdentityRole>()	

				.AddEntityFrameworkStores<ApplicationDbContext>()	

				.AddDefaultTokenProviders();	

WOW! eBook
www.wowebook.org

In	the	Configure()	method	of	your	Startup	class,	verify	that	the	following	code	is	there	to
enable	the	use	of	Identity	features	in	ASP.NET	Core:

app.UseIdentity();	

There	are	several	configuration	flags	that	allow	us	to	customize	additional	options	for	the	use
for	Identity	features.	These	include,	but	are	not	limited	to,	password	restrictions.	The
following	code	shows	how	this	works.	For	example,	you	should	set	RequireDigit	to	true	if
you	want	to	require	that	digits	should	be	used	in	a	user's	password	during	registration:

services.AddIdentity<ApplicationUser,	IdentityRole>(

				options	=>	

				{	

								options.Password.RequireDigit	=	true;	

								options.Password.RequiredLength	=	8;	

								options.Password.RequireLowercase	=	false;	

								options.Password.RequireNonAlphanumeric=	true;	

								options.Password.RequireUppercase	=	false;	

				})	

				.AddEntityFrameworkStores<ApplicationDbContext>()	

				.AddDefaultTokenProviders();	

If	you	want	to	explore	additional	options,	you	can	enter	a	period	after	the	word	options	in	the
list	of	options.	This	will	allow	you	to	use	IntelliSense	to	discover	what	else	is	available	for
you.	The	password-related	options	provide	these	restrictions	on	top	of	any	attributes	you	may
have	already	assigned	in	the	password	field	of	an	MVC	model.

Run	your	application	and	click	the	Register	link	in	the	top	panel.	Once	registered,	you	will	be
automatically	redirected	to	the	application	as	the	registered	user.	You	can	log	out	and	then	log
back	in	with	the	credentials	you	created.

WOW! eBook
www.wowebook.org

External	service	providers
Many	users	may	already	have	accounts	provided	by	external	services	that	they	want	to	reuse.
Social	media	giants	such	as	Twitter	and	Facebook	provide	authentication	services	that	you	can
easily	integrate	with	your	ASP.NET	Core	application.

The	hard	part	is	actually	setting	up	an	app	on	the	provider's	respective	website,	which	gets
easier	once	you	have	it	set	up.

Here	is	an	overview	of	the	steps	required	to	set	up	an	external	service	provider:

1.	 Visit	the	external	provider's	website	to	set	up	an	app	on	their	system.
2.	 Obtain	the	necessary	ID,	key,	secret,	or	token	values.
3.	 Install	the	Secret	Manager	tool	in	your	development	environment.
4.	 Assign	secret	values	using	the	values	you	obtained	earlier.
5.	 Update	your	code	to	use	the	user	secret	store	during	development.
6.	 Update	your	code	to	use	a	third-party	provider,	for	example,	Facebook.
7.	 Verify	the	authentication	by	logging	in	to	your	application	through	Facebook.

In	an	Azure	(cloud)	environment,	you	can	configure	secret	values	under	Application	Settings
for	your	web	app.	We	will	cover	Azure	deployment	in	Chapter	9	,	Deploying	Your	Application.

To	set	up	an	app	in	an	external	provider's	system,	visit	their	specific	website:

Facebook:	https://developers.facebook.com/
Twitter:	https://apps.twitter.com/
Microsoft:	https://account.live.com/developers/applications/
Google:	https://developers.google.com/identity/

The	instructions	and	user	interface	for	each	provider	may	change	over	time,	so	you	should
always	visit	each	particular	website	for	the	latest	instructions.	The	overall	process	usually
involves	creating	a	named	app	and	then	obtaining	a	set	of	values	that	uniquely	identify	your
app.

Let's	explore	one	particular	process	by	integrating	Facebook	authentication	in	our
application:

1.	 Go	to	https://developers.facebook.com/.
2.	 Register	as	a	new	developer.
3.	 Create	a	new	app.
4.	 Choose	the	website	platform	if	asked.
5.	 Create	an	App	Id	with	a	display	name	of	your	choice
6.	 Proceed	to	the	Settings	screen	once	your	app	has	been	created.
7.	 Make	a	note	of	your	App	Id	and	App	Secret	values.
8.	 Click	the	Add	Platform	button.
9.	 Select	the	website	platform	from	the	list	of	selections.

WOW! eBook
www.wowebook.org

https://developers.facebook.com/
https://apps.twitter.com/
https://account.live.com/developers/applications/
https://developers.google.com/identity/
https://developers.facebook.com/

10.	 Add	your	website's	URL.
11.	 In	the	Advanced	section,	add	your	URL	as	a	Redirect	URI.

When	testing	your	app	during	development,	you	can	use	a	localhost	URL	with	the	appropriate
port	number.	To	test	a	deployed	website	on	a	server	with	a	domain	name,	you	should	use	the
fully-qualified	domain	name.	Keep	in	mind	that	the	preceding	instructions	may	be	subject	to
change,	so	you	should	refer	to	the	instructions	on	the	Facebook	developer	website	in	case
something	has	changed.

Verify	the	following:

The	project's	userSecretsId	value	is	defined	in	your	project.json	file
Microsoft.Extensions.Configuration.UserSecrets	is	under	dependencies
SecretManager	is	listed	in	the	tools	section	of	the	project.json	file

Open	up	a	command	prompt	with	administrative	privileges.	Switch	to	your	project	directory
and	then	test	the	Secret	Manager	tool	using	the	following	DNU	command:

>dotnet	user-secrets	-h

You	may	have	to	run	dotnet	restore	before	the	preceding	command	if	you	have	just	added
the	SecretManager	to	your	configuration	file.	After	the	SecretManager	has	been	verified,
follow	up	with	these	two	additional	commands	to	store	your	app	ID	and	secret	values	you
obtained	from	Facebook:

dotnet	user-secrets	set	Authentication:Facebook:AppId	<Value>

dotnet	user-secrets	set	Authentication:Facebook:AppSecret	<Value>

Note

Note	that	the	placeholder	values	above	must	be	replaced	by	actual	values	for	the	commands	to
work.	If	the	values	change	in	Facebook,	you	must	rerun	these	two	commands	to	ensure	that
the	latest	values	are	stored	in	your	development	environment.

Verify	that	the	constructor	in	your	Startup	class	has	the	following	line	of	code	in	it:

builder.AddUserSecrets();	

This	line	of	code	must	only	be	run	when	IsDevelopment()	returns	true	to	ensure	that	this
scenario	only	exists	in	a	development	environment.	To	verify	whether	your	environment	is
correctly	configured	for	this,	make	sure	that	the	environment	variable	for	hosting	is	set	to
Development,	as	shown	in	the	following	screenshot.	You	can	check	this	in	the	Debug	tab	of
your	web	project's	Properties	panel.	You	can	also	see	it	in	launchSettings.json	file	under
the	project's	Properties	folder:

WOW! eBook
www.wowebook.org

Finally,	update	your	Configure()	method	in	Startup.cs	to	use	Facebook	authentication.	Add
the	following	code	just	after	the	call	to	UseIdentity():

app.UseFacebookAuthentication(new	FacebookOptions()	

{	

				AppId	=	Configuration["Authentication:Facebook:AppId"],	

				AppSecret	=	Configuration["Authentication:Facebook:AppSecret"]	

});	

The	next	time	you	run	your	application	and	attempt	to	log	in,	you	should	see	an	option	for
Facebook	authentication	in	the	list	of	other	services.	In	case	you're	wondering	how	this
Facebook	button	is	displayed,	take	a	look	at	the	Login.cshtml	view	for	the	Account	controller
in	your	code,	as	shown	in	the	following	screenshot:

In	the	Login.cshtml	view	(under	the	Account	subfolder	of	the	Views	folder),	there	is	a	block
of	code	surrounded	by	@{}	delimiters	that	checks	for	external	authentication	providers.	If	any
providers	are	found,	a	button	is	displayed	for	each	provider,	within	a	foreach	loop.	A
simplified	version	of	this	server-side	code	is	as	follows:

var	loginProviders	=	SignInManager.GetExternalAuthenticationSchemes().ToList();	

WOW! eBook
www.wowebook.org

if	(loginProviders.Count	==	0)	

{	

				<p>None	configured</p>	

}	

else	

{	

				<form		

								asp-controller="Account"		

								asp-action="ExternalLogin"		

								asp-route-returnurl="@ViewData["ReturnUrl"]"		

								method="post"	class="form-horizontal"	role="form">	

									

				@foreach	(var	provider	in	loginProviders)	

				{	

								<button		

												type="submit"		

												class="btn	btn-default"		

												name="provider"		

												value="@provider.AuthenticationScheme"		

												>	

								@provider.AuthenticationScheme	

								</button>	

				}	

				</form>	

}	

After	you	log	in,	your	authentication	should	be	processed	by	Facebook	and	you	may	be
prompted	to	log	in	to	Facebook.	If	you're	already	logged	in	to	Facebook	in	the	current
window,	your	current	session	will	be	used.	In	both	cases,	you	should	be	redirected	back	to
your	application	and	your	username	will	be	the	login	name	(for	example,	your	e-mail
address)	that	you	may	have	used	to	log	in	to	Facebook.

By	default,	your	Facebook	account	will	be	the	administrator	of	the	Facebook	app.	When	you
log	in	to	your	web	app,	you	will	be	asked	to	associate	your	Facebook	account	with	a	new
account	in	your	web	app's	user	system.	You	can	register	for	a	new	account	by	entering	a	new
e-mail	address	in	the	association	screen.	If	you	want	to	add	additional	users	during	testing,
you	must	first	go	to	the	Roles	tab	for	your	app	on	the	Facebook	developers'	website,	where
you	can	add	additional	administrators,	developers,	and	testers.

WOW! eBook
www.wowebook.org

Using	authorization	for	application	features
As	explained	in	the	introduction	to	this	chapter,	authorization	can	be	used	to	exclude	a	user
from	specific	parts	of	an	application	once	they	have	already	been	authenticated.	In	our
Hospital	Records	application,	we	could	restrict	certain	features	so	they	are	accessible	to
doctors	but	not	nurses	or	patients.

WOW! eBook
www.wowebook.org

High-level	overview
Here	is	a	high-level	overview	of	how	you	can	implement	basic	authorization	techniques	in	an
ASP.NET	Core	application:

1.	 Use	the	Authorization	namespace	in	your	controller	code.
2.	 Grant	authorization	at	the	controller	class	level.
3.	 Grant	authorization	at	the	controller	action	method	level.
4.	 Grant	anonymous	access	at	the	controller	class	level.
5.	 Grant	anonymous	access	at	the	controller	action	method	level.

Although	the	first	step	is	required	to	use	authorization,	the	rest	of	the	suggestions	do	not	have
to	be	followed	in	any	particular	order.	In	fact,	you	can	authorize	either	a	controller	class	or	a
method,	both,	or	none	at	all.	In	all	cases,	if	you	grant	anonymous	access,	it	takes	precedence
over	any	other	authorization.	For	example,	a	class	with	both	authorization	and	anonymous
access	set	will	grant	anonymous	access	to	any	user.

The	easiest	ways	to	implement	authorization	are	with	Role-Based	Authorization	and	Claims-
Based	Authorization.	We	will	cover	both	of	these	techniques	in	this	section.	For	a	more
complete	list	of	more	complex	authorization	techniques,	please	refer	to	the	official
documentation	at	the	following	URL:

http://docs.asp.net/en/latest/security/authorization

WOW! eBook
www.wowebook.org

http://docs.asp.net/en/latest/security/authorization

Basic	authorization
To	configure	authorization,	the	quickest	way	is	to	simply	add	the	Authorize	attribute	to	a
specific	controller	class.	The	following	code	shows	how	this	can	be	applied	to	the
HumanController:

[Authorize]	

public	class	HumanController	:	Controller	

{	

}	

In	order	to	use	the	Authorize	attribute,	make	sure	you	have	the	proper	using	statement	above
the	class	definition:

using	Microsoft.AspNetCore.Authorization;	

Run	the	application	from	Visual	Studio	and	click	on	the	Humans	link	in	the	top	toolbar	to
access	the	HumanController.	Since	the	controller	has	been	restricted	at	the	class	level,	you
will	be	redirected	to	the	Login	page	if	you	try	to	access	the	HumanController	without	logging
in	first.

To	try	out	anonymous	access,	add	the	[AllowAnonymous]	attribute	to	the	Index()	action
method	of	the	HumanController	class:

[AllowAnonymous]	

public	async	Task<IActionResult>	Index()	

Run	the	application	again,	then	click	on	the	Humans	link	once	again.	Even	though	the
controller	has	been	restricted	at	the	class	level,	the	Index()	method	will	let	you	access	the
Index	view	without	having	to	log	in,	but	trying	to	access	the	Edit/Delete	links	will	prompt
you	to	log	in.	This	overriding	behavior	works	even	when	you	have	an	[Authorize]	attribute
on	an	action	method	along	with	an	[AllowAnonymous]	attribute.

WOW! eBook
www.wowebook.org

Roles	and	claims
Going	beyond	basic	authentication,	we	can	implement	Role-Based	Authorization	and	Claims-
Based	Authorization	for	even	more	precise	access	control.	These	types	of	authorization	rely
on	the	following	ASP.NET	user-related	tables:

AspNetUsers:	User	table	with	user	ID,	e-mail,	password,	and	so	on
AspNetRoles:	Master	list	of	roles
AspNetUserRoles:	Users	mapped	to	specific	roles
AspNetUserClaims:	Users	mapped	to	specific	claims
AspNetRoleClaims:	Roles	(and	thus,	users)	mapped	to	specific	claims

To	populate	the	database	with	some	sample	data,	go	through	the	following	steps	to	create	new
users,	roles,	and	claims.	It	is	OK	to	use	fake	e-mail	addresses	for	testing	purposes.	To	interact
with	the	database,	use	the	SQL	Server	Object	Explorer	panel	in	Visual	Studio	to	expand	the
contents	of	the	Patient	Records	database.

You	can	right-click	any	table	and	select	View	Data	to	view	(and	edit)	its	data:

1.	 From	Visual	Studio,	run	the	application.
2.	 In	your	browser,	click	Register	in	the	top	right	menu.
3.	 Register	a	few	users	(for	example,	doctor,	nurse,	patient)	in	your	browser.
4.	 In	the	database,	verify	the	users	in	the	AspNetUsers	table.
5.	 Add	a	few	roles	to	the	AspNetRoles	table,	with	sequential	ID	values.
6.	 Add	a	few	records	to	the	AspNetUserRoles	table	to	map	a	user	to	a	role.
7.	 Add	a	few	records	to	the	AspNetUserClaims	table	to	map	a	user	to	a	claim.
8.	 Leave	the	AspNetRoleClaims	table	empty	for	now.

If	you	need	help	with	adding	data	to	the	AspNetRoles	table,	here	are	some	sample	values:

Id ConcurrencyStamp Name NormalizedName

1 NULL Admins Admins

2 NULL Doctors Doctors

3 NULL Nurses Nurses

If	you	need	help	with	adding	data	to	the	AspNetUserRoles	table,	here	are	some	sample	values:

UserId RoleId

WOW! eBook
www.wowebook.org

cb09fda1-1458-4da1-bee8-3e831d68ca8c 3

e8104b13-72e6-497f-baac-0619548c1e70 2

You	should	not	copy	the	preceding	UserId	values	into	your	AspNetUserRoles.	Instead,	you
should	check	your	own	AspNetUsers	table	to	copy	the	Globally	Unique	ID	(GUID)	values
assigned	to	each	user's	UserId	field.	These	are	automatically	generated	by	the	built-in
registration	tool.	Here	is	a	sample	of	what	the	AspNetUsers	table	may	look	like:

UserId Email .	.	.

cb09fda1-1458-4da1-bee8-3e831d68ca8c RobotNurse1@fakedomain.com

e8104b13-72e6-497f-baac-0619548c1e70 RobotDoctor1@fakedomain.com

Finally,	if	you	need	help	adding	data	to	the	AspNetUserClaims	table,	here	are	some	sample
values.	In	this	table,	the	ID	values	are	automatically	generated	in	sequence:

Id ClaimType ClaimValue UserId

1 DoctorCred 123456789 e8104b13-72e6-497f-baac-0619548c1e70

2 NurseCred 987654321 cb09fda1-1458-4da1-bee8-3e831d68ca8c

Now	that	your	data	is	all	set	up,	decorate	your	action	methods	with	the	attributes	shown	here:

[Authorize(Roles	=	"Doctors,Nurses")]	

public	async	Task<IActionResult>	Index()	

	

[Authorize(Roles	=	"Doctors")]	

public	IActionResult	Create	

The	preceding	code	ensures	the	following:

Both	doctors	and	nurses	will	be	able	to	access	the	main	Index	view
Only	doctors	will	be	able	to	create	a	new	entry

This	covers	the	setup	and	usage	of	Role-Based	Authorization.	To	use	Claims-Based
Authorization,	you'll	have	to	update	your	startup	configuration	and	use	additional	attributes
and	parameters	in	your	controller	code.

WOW! eBook
www.wowebook.org

Within	the	ConfigureServices()	method	of	the	Startup.cs	file,	add	a	call	to
AddAuthorization()	right	after	the	call	to	AddMvc(),	as	shown	here:

services.AddAuthorization(options	=>	

{	

				options.AddPolicy("DoctorsOnly",		

								policy	=>	policy.RequireClaim("DoctorCred"));	

	

});	

This	will	add	a	new	policy	to	your	application	called	DoctorsOnly	and	requiring	the	claim
DoctorCred.	You	may	recall	that	DoctorCred	is	the	ClaimType	we	added	to	the
AspNetUserClaims	table	earlier	in	this	section.	To	make	use	of	this	claim,	simply	add	the
following	attribute	to	the	Details()	method,	as	shown	here:

[Authorize(Policy	=	"DoctorsOnly")]	

public	async	Task<IActionResult>	Details(int?	id)	

This	ensures	that	only	users	with	the	DoctorCred	claim	can	access	the	details	of	the	list	of
human	patients.	To	go	one	step	further,	redefine	the	claim	to	include	a	specific	claim	number.
This	value	can	be	a	set	of	one	or	more	comma-separated	values:

services.AddAuthorization(options	=>	

{	

				options.AddPolicy("DoctorsOnly",		

								policy	=>	policy.RequireClaim("DoctorCred",	"123456789"));	

	

});	

Run	your	application	and	log	in	as	the	various	users	you	created	earlier.	Verify	that	you	are
observing	the	behavior	you	expect	based	on	the	authorization	privileges	for	each	user.
Without	the	proper	permissions,	you	can	expect	to	see	an	Access	Denied	error	page.

WOW! eBook
www.wowebook.org

Protecting	your	data
ASP.NET	Core	includes	a	new	data	protection	system	that	can	be	used	in	web	applications	and
console	applications.	You	may	recall	that	the	list	of	templates	for	ASP.NET	Core	include	a
console	application	that	we	have	not	needed	to	use	in	previous	chapters	and	shown	in	the
following	screenshot.	However,	this	project	type	would	be	a	great	choice	for	illustrating
framework	features,	such	as	the	use	of	data	protection	in	ASP.NET	Core:

The	<machinekey>	element	was	used	in	prior	versions	of	ASP.NET,	and	the	new	data
protection	stack	is	intended	to	be	its	replacement.	To	make	things	easier,	the	new	system
encourages	its	use	with	minimal	configuration	effort.	At	the	same	time,	there	are	extensibility
APIs	that	allow	more	customization	as	needed.

WOW! eBook
www.wowebook.org

Data	protection	in	ASP.NET	Core
When	a	user	communicates	with	a	web	application,	there	are	many	ways	to	persist	and
transfer	data.	Some	methods	are	more	persistent	than	others,	while	security	and	encryption
may	vary	greatly.	A	token	provided	to	an	authenticated	user	needs	to	be	trusted	when	used
later	on.	That's	where	data	protection	comes	in.

The	ASP.NET	team	has	identified	a	few	requirements	when	building	the	new	data	protection
system:	authenticity,	confidentiality,	and	isolation.	These	requirements	are	all	satisfied	by
ensuring	that	we	can	vouch	for	the	integrity	of	the	protected	data,	while	keeping	the	data	safe
from	an	untrusted	client.	Note	that	this	does	not	prevent	a	malicious	app	from	misusing	the
API	to	get	access	to	protected	data	where	it	shouldn't.

WOW! eBook
www.wowebook.org

Implementing	data	protection
Setting	up	your	project	with	the	new	Data	Protection	API	is	fairly	simple.	This	is	intentional
and	allows	a	developer	to	get	up	and	running	quickly.	Keep	in	mind	that	the	protected	data
should	not	be	something	that	you	would	like	to	store	for	an	indefinite	period	of	time.	It	would
be	technically	feasible,	but	not	recommended.

To	get	started,	create	a	new	Console	Application	using	the	following	steps:

1.	 Click	File	|	New	|	Project	in	Visual	Studio	2015.
2.	 From	the	list	of	Installed	templates,	choose	Visual	C#	|	.NET	Core	|	Console

Application	(.NET	Core).
3.	 Enter	DataProtectionApp	as	the	project	name	and	click	OK.
4.	 Open	the	project.json	file	for	editing.
5.	 Add	the	following	references	to	the	list	of	dependencies:

						"Microsoft.AspNetCore.DataProtection":"1.0.0",	

						"Microsoft.Extensions.DependencyInjection":	"1.0.0"	

As	you	type	in	the	version	numbers,	you	will	most	likely	use	the	most	stable	version
available.	Within	the	DataProtection	namespace,	you	can	get	access	to	a	data	protection
provider	and	its	methods	for	protecting	and	unprotecting	your	data.	The
DependencyInjection	namespace	will	allow	you	to	easily	set	up	your	data	protection	using
DI.	You	will	use	a	so-called	purpose	string	to	tie	it	all	together.

Edit	the	Main()	method	of	the	Program.cs	file	to	include	the	following	code:

var	serviceCollection	=	new	ServiceCollection();	

serviceCollection.AddDataProtection();	

var	services	=	serviceCollection.BuildServiceProvider();	

													

var	instance	=	ActivatorUtilities.CreateInstance<DataProtector>(services);	

instance.ProtectAndRelease();	

To	use	the	ServiceCollection	and	ActivatorUtilities	classes,	make	sure	that	you	add	the
following	using	statement	to	the	top	of	the	Program	class.

using	Microsoft.Extensions.DependencyInjection;		

The	preceding	code	creates	an	instance	of	a	DataProtector	class	that	we	will	create	next.	It
will	have	one	public	ProtectAndRelease()	method.	As	you	may	have	guessed,	this	method
will	be	responsible	for	protecting	some	input	data,	and	then	releasing	it	as	unprotected	data.	In
a	real-world	scenario,	you	probably	wouldn't	unprotect	the	data	in	the	same	method.

To	create	the	DataProtector	class,	follow	these	steps:

1.	 Right-click	your	project	in	the	Solution	Explorer	panel.
2.	 Choose	Add	|	Class	from	the	pop-up	menu.

WOW! eBook
www.wowebook.org

3.	 Name	the	class	DataProtector.cs	and	click	Add,	as	shown	in	the	following	screenshot:

Add	the	following	instance	variable	and	constructor	to	the	DataProtector	class:

IDataProtector	_protector;									

public	DataProtector(IDataProtectionProvider	provider)	

{	

				_protector	=	provider.CreateProtector("Company.Project.v1");	

}	

In	order	to	use	the	IDataProtector	and	IDataProtectionProvider	interfaces,	make	sure	you
add	the	following	namespace	to	the	top	of	your	DataProtector	class:

using	Microsoft.AspNetCore.DataProtection;	

The	constructor	is	responsible	for	creating	a	new	data	protection	provider	object,	which	in
turn	is	used	to	create	a	new	protector.	The	Company.Project.v1	purpose	string	is	used	to
create	the	protector	used	for	this	sample.	This	string	could	be	anything	you	want	it	to	be,	but	it
is	recommended	that	you	make	it	unique	for	your	application.	Elsewhere	in	the	same
application,	creating	a	protector	with	the	same	purpose	string	will	allow	that	protector	to
unprotect	the	data	that	was	previously	protected	by	the	first	protector.

Finally,	add	the	following	method	to	take	care	of	protecting	and	unprotecting	your	data.	The
Protect()	method	can	take	in	a	string	value	or	a	byte	array	as	its	input	parameter:

WOW! eBook
www.wowebook.org

public	void	ProtectAndRelease()	

{	

				Console.Write("Enter	input:	");	

				string	userToken	=	Console.ReadLine();	

	

				string	protectedToken	=	_protector.Protect(userToken);	

				Console.WriteLine($"Protected	token:	{protectedToken}");	

													

				string	unprotectedToken	=	_protector.Unprotect(protectedToken);	

				Console.WriteLine($"Unprotected	result:	{unprotectedToken}");	

	

				Console.ReadKey();	

}	

You	are	now	ready	to	run	your	application.	Run	the	application	from	within	Visual	Studio	and
enter	some	sample	text,	for	example,	a	user	token	in	the	form	of	a	text	string.	You	should
immediately	see	the	output	from	the	ProtectAndRelease()	method,	which	shows	the	protected
and	unprotected	versions	of	the	text	you	entered:

You	may	be	tempted	to	add	this	data	protection	code	to	your	ASP.NET	Core	controllers	in
your	web	project.	Instead,	you	should	consider	abstracting	away	service	classes	to	handle
specific	part	of	your	application	to	keep	your	controllers	lean.

WOW! eBook
www.wowebook.org

How	it	all	works
To	understand	how	all	of	this	works,	let's	go	back	to	the	purpose	string.	The	purpose	can	be
provided	as	a	string,	a	list	of	strings,	or	even	a	daisy-chain	of	method	calls.	You	could	use	any
one	of	the	formats	shown	here:

CreateProtector("Company.Project.v1");	

CreateProtector(new	List<string>	{	"Comp",	"Proj",	"v1"	});	

CreateProtector("Comp.Proj").CreateProtector("v1");	

As	long	as	two	provider	objects	are	considered	equivalent,	one	provider	can	unprotect	data
that	has	been	protected	by	another	provider.	Keep	in	mind	the	following	points:

Purpose	strings	are	considered	equivalent	if	they	contain	the	same	strings	in	the	same
order
Provider	objects	are	considered	equivalent	if	they	were	created	with	equivalent	purpose
string	values
Protector	objects	are	considered	equivalent	if	they	were	created	from	equivalent
provider	objects
Internally,	the	system	uses	a	unique	identifier	in	the	purpose	chain	that	is	unique	for	the
application

Here	are	some	considerations	you	should	be	aware	of:

If	any	user	input	is	used	when	building	a	purpose	string,	append	something	to	the	string
to	prevent	the	user	from	controlling	how	a	purpose	string	may	look	in	its	entirety.
You	should	catch	a	CryptographicException	where	it	occurs.	If	a	different	data	protector
is	used	to	attempt	an	unprotect	operation	or	if	a	payload	has	been	tampered	with,	such	an
exception	will	be	thrown.
This	method	of	data	protection	doesn't	protect	malicious	application	code	from	itself.	If
the	same	purpose	string	is	reused	where	it	shouldn't	be,	this	may	result	in	equivalent
provider	objects	where	you	aren't	expecting	them.

This	is	by	no	means	a	complete	picture	of	all	that	you	need	to	know	about	data	protection	in
ASP.NET	Core.	To	learn	more,	read	through	the	official	documentation	available	at	the
following	URL:

https://docs.asp.net/en/latest/security/data-protection

WOW! eBook
www.wowebook.org

https://docs.asp.net/en/latest/security/data-protection

Implementing	web	application	security
Soon	after	the	web	became	accessible	to	the	world,	web	applications	started	to	pop	up
everywhere.	Along	with	web	applications	came	vulnerabilities	that	could	be	exploited	by
malicious	users.	Fortunately,	security	experts	and	framework	developers	are	constantly
providing	ongoing	advice	and	better	safeguards.

Some	common	security	vulnerabilities	over	the	years	have	included	the	following:

SQL	Injection:	SQL	is	executed	against	a	database	by	injecting	malicious	SQL	scripts
through	HTML	form	fields	whose	values	are	used	to	build	a	text	string	of	SQL.	By
using	LINQ	to	entities	with	an	ORM	such	as	EF	Core,	you	can	avoid	the	risk	of	SQL
Injection.	If	you	find	yourself	using	parameterized	queries,	make	sure	you	sanitize	any
user	input	(by	HTML-encoding	the	values)	before	using	them	in	a	query	parameter.
Sensitive	Data	Exposure:	Information	about	the	server,	file	system,	database,	and
operating	system	may	be	unnecessarily	exposed	in	a	production	setting,	especially
during	error	conditions.	It	is	good	practice	to	avoid	revealing	too	much	information	to
the	end	user.	Instead,	take	advantage	of	built-in	logging	features	to	store	the	details
elsewhere	if	an	error	occurs,	while	displaying	a	numeric	error	code	and	friendly
message	to	the	user.
Cross-Site	Scripting	(XSS):	Malicious	script	code	is	injected	into	the	body	of	an	HTML
page,	usually	through	QueryString	parameters.	Fortunately,	there	are	multiple	ways	to
fend	off	XSS	attacks.

The	rest	of	this	section	explores	some	techniques	for	fighting	XSS,	preventing	forgery,	and
enabling	cross-origin	requests.

WOW! eBook
www.wowebook.org

Cross-site	scripting
To	prevent	cross-site	scripting	attacks	from	malicious	users,	you	may	have	used	the	AntiXSS
library	with	a	previous	version	of	ASP.NET.	However,	AntiXSS	is	has	been	considered	end-
of-life	as	of	late	2015.	As	a	result,	the	AntiXSS	library	is	not	compatible	with	.NET	Core	1.0.

The	Sanitizer	object	from	the	most	recent	version	of	the	AntiXSS	library	included	a	method
to	convert	potentially	unsafe	HTML	code	to	a	safer	alternative.	As	a	replacement,	you	can	let
the	Razor	engine	in	ASP.NET	MVC	automatically	encode	the	values	of	variables	from
untrusted	sources.	The	end	goal	is	to	ensure	that	the	users	of	your	application	can't	inject
malicious	client-side	scripts	into	your	HTML	body.

For	more	details	on	HTML	Encoding	in	ASP.NET	MVC	web	apps,	check	out	the	section	on
HTML	Encoding	on	the	XSS	section	of	the	ASP.NET	documentation:

https://docs.asp.net/en/latest/security/cross-site-scripting.html

WOW! eBook
www.wowebook.org

https://docs.asp.net/en/latest/security/cross-site-scripting.html

Anti-forgery
The	[ValidateAntiForgeryToken]	attribute	provides	built-in	anti-forgery	support	for	your
web	applications.	It	generates	an	HTTP-only	cookie	with	a	value	that	is	also	written	to	the
HTML	form.	If	there	is	a	mismatch	in	the	value	after	the	HTTP	POST	operation	occurs,	this
signals	a	red	flag	that	a	Cross-Site	Request	Forgery	(CSRF)	may	have	occurred;	that	is,	the
form	being	submitted	has	been	altered	from	what	was	originally	provided	by	the	server.

You	may	have	already	noticed	that	this	[ValidateAntiForgeryToken]	attribute	has	been
applied	to	several	action	methods	in	the	AccountController	provided	by	the	web	project
template:

[HttpPost]	

[ValidateAntiForgeryToken]	

public	async	Task<IActionResult>	MethodName(...)	

{	

								//	...	

}	

If	you	need	to	disable	this	feature	for	a	particular	form,	you	can	set	the	tag	helper	asp-anti-
forgery	attribute	to	false	in	the	desired	view:

<form	asp-controller="controllerName"		

						asp-antiforgery="false"asp-anti-forgery="false"	

						asp-action="methodName">	

</form>	

WOW! eBook
www.wowebook.org

Cross-origin	requests
Due	to	the	so-called	same-origin	policy,	web	browsers	typically	prevent	web	pages	from
making	AJAX	requests	to	a	page	on	a	different	domain.	However,	your	web	app	may	have	a
need	to	accept	an	AJAX	request	from	a	different	domain.	Fortunately,	the	World	Wide	Web
Consortium	(W3C)	organization	defines	a	standard	named	Cross-Original	Resource
Sharing	(CORS)	that	enables	cross-origin	requests.

To	determine	whether	two	URLs	have	the	same	origin	or	not,	compare	the	domain,
subdomain,	port	number,	and	scheme	(HTTP/HTTPS)	of	each	URL.	If	they	are	different,	that's
where	CORS	becomes	a	useful	tool.	To	enable	CORS	in	ASP.NET	Core,	follow	the	simple
steps	outlined	here:

1.	 Add	a	reference	to	the	CORS	package	to	your	project.json	file.
2.	 Update	the	ConfigureServices()	method	to	add	Cors.
3.	 Update	the	Configure()	method	to	use	Cors.
4.	 Customize	CORS	behavior	with	attributes	in	your	controller	code.

To	add	a	reference	to	your	project,	add	the	following	package	in	the	dependencies	section	of
your	project.json	file:

"Microsoft.AspNetCore.Cors":	"1.0.0"	

To	set	up	your	configuration,	add	the	following	code	to	AddCors()	in	the
ConfigureServices()	method	of	your	Startup	class.	You	may	add	it	right	after	the	call	to
AddMvc():

services.AddCors(options	=>	

{	

				options.AddPolicy("AllowSpecificOrigin",	

								builder	=>	

								{	

												builder.WithOrigins("http://fakedomain.com");	

								});	

});	

The	preceding	code	adds	CORS	functionality	to	your	application	while	explicitly	specifying
the	named	AllowSpecificOrigin	policy.	It	allows	a	cross-origin	request	from
fakedomain.com	to	come	through	to	your	website	to	be	processed.

To	enable	CORS	at	the	controller	class	level,	use	the	[EnableCors]	attribute:

[EnableCors("AllowSpecificOrigin")]	

public	class	MyController:	Controller	

To	enable	CORS	at	the	controller	method	level,	use	the	same	attribute:

[EnableCors("AllowSpecificOrigin")]	

WOW! eBook
www.wowebook.org

public	IActionResult	ActionMethod()	

In	both	cases,	add	the	proper	using	statement	to	include	the	CORS	namespace:

using	Microsoft.AspNetCore.Cors;	

The	setting	at	the	method	level	takes	precedence	over	the	setting	at	the	controller	level,	which
takes	precedence	over	the	setting	at	the	application	level.	This	allows	us	to	disable	CORS	at
any	level	we	choose,	even	if	it	has	been	enabled	at	the	application	level.	For	example,	you	can
add	the	[DisableCors]	attribute	to	a	specific	method,	if	you	need	to	disable	CORS	for	just	that
particular	method.

To	add	the	AllowSpecificOrigin	policy	in	your	application	at	a	global	level,	add	the
following	code	to	your	ConfigureServices()	method.	You	may	add	this	code	after	the	call	to
AddMvc():

services.Configure<MvcOptions>(options	=>	

{	

				options.Filters.Add(

								new	CorsAuthorizationFilterFactory("AllowSpecificOrigin"));	

});	

In	order	to	use	the	MvcOptions	and	CorsAuthorizationFilterFactory	classes	in	your	Startup
class,	you	will	have	to	add	the	following	namespaces	to	the	top	of	the	class:

using	Microsoft.AspNetCore.Mvc;	

using	Microsoft.AspNetCore.Mvc.Cors.Internal;	

WOW! eBook
www.wowebook.org

Summary
In	this	chapter,	we	discussed	some	ways	of	providing	access	to	your	application	and	other
ways	of	restricting	access	to	it.	You	can	use	authentication	to	verify	a	user's	identity	while	you
can	use	authorization	to	enable	access	to	specific	parts	of	the	application.	You	can	protect
small	bits	of	data	using	the	new	data	protection	system,	while	you	can	take	several	different
actions	to	protect	your	application	from	well-known	security	risks.

In	the	next	and	final	chapter	we	will	cover	the	process	of	deployment.	A	web	application	is	no
good	if	it	only	sits	in	your	development	environment.	By	deploying	your	application	to	a
public	website,	you	can	reach	a	global	audience.	By	deploying	to	the	cloud,	you	can	scale
your	website	to	meet	public	demand.

WOW! eBook
www.wowebook.org

Chapter	9.		Deploying	Your	Application
There	are	plenty	of	ways	for	you	to	get	your	web	application	to	the	world	out	there.	But	there
are	additional	considerations	beyond	deploying	just	the	web	project.	Typically,	you	would
also	deploy	your	database	but	you	wouldn't	want	your	test	data	in	production.	You	should
maintain	separate	configuration	settings	so	that	your	project	can	point	to	the	correct	database
in	each	environment.

Visual	Studio	and	ASP.NET	Core	help	you	maintain	your	project	files	and	settings	across
different	environments	with	simple	techniques	and	conventions.	With	the	help	of	Microsoft's
Azure	cloud	platform,	you	can	easily	deploy	your	website	within	seconds	and	scale	it	up	and
down	to	meet	demand.

WOW! eBook
www.wowebook.org

Deployment	options
This	chapter	will	focus	on	deploying	your	ASP.NET	Core	application	to	Internet
Information	Services	(IIS)	(Microsoft's	web	server	product)	and	Azure	(Microsoft's	cloud
service).	If	you	plan	on	deploying	to	operating	systems	other	than	Windows,	please	consult
the	documentation	for	your	specific	operating	system.	Before	you	proceed	with	deployment,
you	should	be	familiar	with	the	environment	configuration	settings.

WOW! eBook
www.wowebook.org

Environment	configuration
In	Chapter	8	,	Authentication,	Authorization,	and	Security,	we	took	a	quick	peek	at	the
environment	variable	that	defines	the	hosting	environment,	for	example,	development,
staging,	or	production.	You	may	recall	that	a	list	of	environment	variables	appears	in	the
Debug	tab	of	your	web	project's	Properties	panel.

Open	the	launchSettings.json	file	to	see	the	same	variable	in	a	configuration	file:

"environmentVariables":	{	

		"ASPNETCORE_ENVIRONMENT":	"Development"	

}	

You	may	have	to	expand	the	Properties	node	in	the	Solution	Explorer	panel	to	find	the
launchSettings.json	file:

The	Configure()	method	of	the	Startup.cs	file	takes	in	an	IHostingEnvironment	parameter
named	env.	This	can	be	used	to	check	the	environment	type,	for	example:

if	(env.IsDevelopment())	{	/*	do	something	*/	}	

There	are	several	useful	properties	and	methods,	including	the	following:

env.EnvironmentName:	Read/write	property	used	to	get	or	set	the	name	of	the
environment
env.IsDevelopment():	Returns	true	if	the	EnvironmentName	is	Development
env.IsStaging():	Returns	true	if	the	EnvironmentName	is	Staging
env.IsProduction():	Returns	true	if	the	EnvironmentName	is	Production
env.IsEnvironment(string	environmentName):	Returns	true	if	the	passed	argument
environmentName	matches	the	current	EnvironmentName

On	Windows,	the	value	of	env.EnvironmentName	is	set	by	the	ASPNETCORE_ENVIRONMENT
variable.	On	Linux	or	OS	X,	the	environment	setup	will	vary,	so	please	consult	the	ASP	.NET

WOW! eBook
www.wowebook.org

documentation	for	non-Windows	deployments,	as	the	documentation	is	still	evolving.	The
suggested	values	are	merely	a	convention,	but	are	recommended	as	a	starting	point.

If	you	need	to	display	different	elements	in	your	MVC	views	based	on	the	environment,	you
can	use	the	environment	tag	helper,	as	shown	in	the	following	snippet.	Multiple	environment
names	can	be	used	in	a	comma-delimited	list:

<environment	names="Development">	

				<p>For	Development	Only</p>	

</environment>	

<environment	names="Staging,Production">	

				<p>For	Staging	and	Production	Only</p>	

</environment>	

To	simulate	these	different	environments	while	testing	your	application,	you	may	create	a
different	profile	for	each	environment	in	the	Debug	tab	of	your	project's	Properties.	Each
time	you	add	a	new	Profile,	you	can	add	the	corresponding	environment	variable	and	assign
the	appropriate	value.	The	related	configuration	file	will	be	updated	automatically.	When	you
deploy	your	application	to	other	environments,	such	as	staging	and	production,	simply
choose	the	appropriate	profile	for	a	particular	build	configuration.

To	help	your	application	find	your	database,	the	database	connection	string	can	be	stored	in
your	appSettings.json	file,	located	in	the	root	location	of	your	web	project:

"ConnectionStrings":	{	

		"DefaultConnection":	"<full	connection	string	goes	here>"	

}	

In	a	server	environment,	you	can	define	environment	variables	directly	on	the	server.	In	an
Azure-hosted	environment,	you	can	set	up	environment	variables	through	the	Azure	Portal.

WOW! eBook
www.wowebook.org

Deploying	your	web	app
There	are	several	ways	you	can	deploy	your	web	app.	You	could	simply	right-click	your	web
project	in	Solution	Explorer	and	select	the	Publish	option,	as	shown	in	the	following
screenshot.	This	will	present	you	with	the	following	publish	targets:

Microsoft	Azure	App	Service:	You	can	either	deploy	to	an	existing	web	app	on	Azure
(formerly	known	as	Azure	Website)	or	create	a	new	web	app	through	Visual	Studio.
Import:	You	can	import	a	Publish	Profile	to	prepopulate	the	fields	that	identify	your
target	location.	This	can	come	from	a	hosting	provider,	network	administrator,	or
development	team.	It	can	also	be	exported	from	an	Azure	web	app.
File	System	(under	Custom):	This	option	is	fairly	rudimentary	but	gives	you	the	option
of	exporting	your	deployed	application	directly	to	your	file	system.	You	can	copy	the
exported	files	to	a	target	destination	of	your	choice	or	compress	them	to	transfer	them
elsewhere.	The	Custom	section	also	offers	other	options	such	as	Web	Deploy,	Web
Deploy	Package,	and	FTP.	Choose	an	option	that	suits	your	needs	and	complete	the
fields	as	necessary.
Other	Hosting	Options:	You	can	visit	a	public	gallery	of	web	hosting	options,	with	the
ability	to	choose	from	an	assortment	of	hosting	partners	at	the	following	URL:
http://hosting.asp.net/hosting.

WOW! eBook
www.wowebook.org

http://hosting.asp.net/hosting

WOW! eBook
www.wowebook.org

Deploying	your	database
SQL	Server	is	a	common	choice	for	many	ASP.NET	developers,	and	it	works	well	with
Entity	Framework.	There	are	many	different	ways	for	you	to	deploy	your	database	to
staging	and	production	environments.	For	some	developers,	this	responsibility	may	be
handed	off	to	database	administrators	or	system	administrators.

Here	are	a	few	options	that	you	may	consider:

Write	SQL	scripts	to	generate	the	database	objects	on	the	server
Use	Entity	Framework	Migrations	to	generate	SQL	scripts	to	run	against	the	server
Use	Entity	Framework	Migrations	to	generate	the	database

You	may	end	up	using	a	combination	of	these	options,	but	the	best	option	is	one	that	you	and
your	team	can	agree	on.	In	some	cases,	you	may	have	to	discuss	the	database	creation	method
with	your	database	administrator,	customer,	or	IT	manager.	You	may	decide	that	the	best
option	is	to	generate	the	SQL	scripts	without	running	them	right	away.	This	will	allow	you	to
inspect	the	scripts	and	make	modifications	if	necessary,	before	actually	affecting	your
database.

Depending	on	your	scenario,	you	may	have	to	automate	the	insertion	of	seed	data	through
code	or	scripts.	Ideally,	your	application	code	should	be	prepared	to	handle	the	absence	of
data.

WOW! eBook
www.wowebook.org

Deploying	to	IIS
Microsoft's	IIS	web	server	predated	even	the	first	release	of	Active	Server	Pages.	IIS
supports	a	wide	variety	of	web	frameworks	and	languages,	including	ASP.NET	with	C#.	You
can	run	IIS	on	your	own	Windows	server	or	in	a	hosted	environment.

To	deploy	to	IIS,	you	can	choose	any	of	the	following	options:

Copy	web	application	files	directly	to	the	web	application	root	on	the	server
Use	Visual	Studio's	aforementioned	publishing	feature
Use	a	Continuous	Integration	system	to	automate	web	deployments

The	following	screenshot	shows	the	IIS	Manager:

WOW! eBook
www.wowebook.org

Setting	up	IIS
Before	you	can	deploy	to	IIS,	you	must	ensure	that	IIS	is	properly	installed	and	configured	on
your	server.	Typically,	a	website	will	run	on	port	80	for	HTTP	access	and	port	443	for
HTTPS	access.	To	enable	Secure	Sockets	Layer	(SSL),	you	will	also	have	install	a
certificate.

If	you're	not	familiar	with	setting	up	IIS,	please	consult	the	official	tutorials	at	the	following
URL:

http://www.iis.net/learn

Setting	up	IIS	involves	the	following	steps:

1.	 In	Server	Manager	on	Windows,	enable	the	Web	Server	(IIS)	role.
2.	 In	IIS	manager,	set	up	a	web	application	to	run	on	the	desired	port(s).
3.	 Set	the	application	pool	to	No	Managed	Code,	as	ASP.NET	Core	manages	its	own

runtime.

You	may	need	to	consult	your	administrator	to	set	up	IIS	in	your	work	environment.	For
additional	information,	please	consult	the	official	documentation	at	the	following	URL:

https://docs.asp.net/en/latest/publishing/iis.html

WOW! eBook
www.wowebook.org

http://www.iis.net/learn
https://docs.asp.net/en/latest/publishing/iis.html

Using	the	filesystem
Once	the	web	server	has	been	set	up	to	run	ASP.NET	Core	applications,	you	can	copy	the	files
from	your	web	application	directly	to	the	web	root	location	on	your	web	server.	From	Visual
Studio,	you	can	use	the	publishing	feature	to	export	your	files	to	a	folder	destination	you	can
access	through	the	filesystem.

To	publish	to	a	filesystem,	follow	these	steps:

1.	 Right-click	your	project	in	Solution	Explorer,	then	click	Publish.
2.	 Select	the	File	System	option	under	Custom.
3.	 Name	your	publishing	profile.
4.	 Select	a	target	location,	then	click	Next.
5.	 Preview	the	connection	information,	then	click	Next.
6.	 Update	the	settings	and	configuration	as	desired,	then	click	Next.
7.	 Preview	the	files	to	be	published,	then	click	Publish.

The	settings	screen	includes	a	checkbox	that	can	be	enabled	to	remove	additional	files	that	are
already	present	in	the	target	location.	This	can	be	useful	if	the	file	list	changes	between
deployments.	Note	that	this	option	is	present	whether	you	are	deploying	to	Azure	or	to	a	file
system	destination,	as	shown	in	the	following	screenshot:

WOW! eBook
www.wowebook.org

WOW! eBook
www.wowebook.org

Importing	a	publish	profile
In	order	to	import	a	publish	profile,	you	will	need	a	publish	profile	file	that	you	generated
yourself,	received	from	a	team	member	or	obtained	from	a	web	host.	You	can	then	choose	the
Import	option	in	the	Publish	dialog	box.	If	you're	not	sure	how	to	generate	your	own	publish
profile,	follow	the	instructions	in	the	next	section	to	create	your	own	web	app.	Then,	browse
to	the	web	app's	blade	in	the	Azure	portal	and	click	the	Get	publish	profile	button	in	the	web
app's	toolbar.

To	publish	using	an	imported	publish	profile,	follow	these	steps:

1.	 Right-click	your	project	in	Solution	Explorer,	then	click	Publish.
2.	 Select	the	Import	option.
3.	 Browse	to	a	publish	profile	file.
4.	 Preview	the	connection	information,	then	click	Next.
5.	 Update	the	settings	and	configuration	as	desired,	then	click	Next.
6.	 Preview	the	files	to	be	published,	then	click	Publish.

WOW! eBook
www.wowebook.org

Deploying	to	Azure,	Microsoft's	cloud	platform
Azure	has	become	a	popular	cloud	platform	for	many	developers	across	the	globe,	whether
the	application	is	using	a	Microsoft	framework	or	an	open-source	alternative.	For	ASP.NET
developers,	Azure	is	a	no-brainer.	Under	the	Free	plan,	you	can	create	up	to	10	free	websites
on	Azure,	which	provides	a	playground	for	web	apps	to	live	out	in	the	wild.

To	get	started	with	Azure,	you	may	sign	up	for	a	free	trial	at	http://azure.com	.

WOW! eBook
www.wowebook.org

http://azure.com

Creating	a	web	app
Once	you	have	signed	up	for	Azure,	you	may	create	a	web	app	using	the	Azure	portal.	This
process	takes	only	a	few	seconds.	Once	kicked	off,	the	web	app	should	be	up	and	running
within	a	minute.

To	create	a	web	app	in	Azure,	follow	these	steps:

1.	 Log	in	to	the	Azure	portal	at	http://portal.azure.com.
2.	 Click	on	the	New	button	on	the	top	left,	marked	with	a	plus	sign.
3.	 Select	Web	+	Mobile	from	the	list	of	options.
4.	 Select	Web	App	from	the	list	of	options.
5.	 Fill	out	the	required	information,	then	click	Create.

Allow	Azure	a	few	seconds	to	generate	your	new	web	app.	Once	your	app	has	been	created,
you	should	be	redirected	to	the	Dashboard.	If	you	pin	the	web	app	to	the	Dashboard,	you
should	see	a	tile	that	updates	you	on	the	status	of	your	web	app.	Once	completed,	you	should
be	redirected	to	the	Settings	blade	of	the	web	app	you	just	created.

The	following	screenshot	shows	the	creation	of	Web	App:

Note	that	the	Azure	UI	will	continue	to	evolve	over	time,	so	the	instructions	in	this	chapter
may	not	reflect	exactly	what	you	see	on	your	screen.	However,	the	basic	flow	of	instructions
can	be	used	as	a	close	approximation	of	what	you	need	to	do.	For	the	latest	instructions,

WOW! eBook
www.wowebook.org

http://portal.azure.com

please	refer	to	the	official	documentation	at	the	following	URL:

https://azure.microsoft.com/documentation

WOW! eBook
www.wowebook.org

https://azure.microsoft.com/documentation

Creating	a	virtual	machine
If	you	need	the	full	control	of	a	virtual	machine	(VM),	you	can	also	create	a	VM	on	Azure	to
deploy	your	applications.	Note	that	a	VM	will	typically	cost	more	than	a	simpler	web	app.	It
will	also	take	more	effort	to	create	and	configure	the	machine	and	the	web	server.

To	create	a	VM	in	Azure,	follow	these	steps:

1.	 Log	in	to	Azure	if	you	haven't	done	so	already.
2.	 Click	on	the	New	button	on	the	top	left,	marked	with	a	plus	sign.
3.	 Select	Virtual	Machines	from	the	list	of	options.
4.	 Select	a	featured	item,	for	example,	Windows	Server	2012	R2	Datacenter.
5.	 Select	a	Deployment	Model	(if	available),	then	click	Create.

Although	you	could	choose	a	Classic	deployment	model,	it	is	recommended	that	you	choose
the	Resource	Manager	option	as	your	deployment	model.	This	will	allow	you	to	easily
manage	related	resources	in	Azure,	along	with	your	VM.

In	the	next	blade	that	appears,	you	must	enter	additional	information	about	your	VM:

Basics:	Enter	a	machine	name	and	admin	credentials	then	select	a	subscription,	resource
group,	and	location.	If	you	don't	have	any	resource	groups	yet,	you	may	create	a	new	one
before	selecting	it.
Size:	Choose	one	of	the	many	preconfigured	machine	sizes.	Your	selection	will
determine	the	number	of	cores,	amount	of	RAM,	amount	of	disk	space,	auto-scaling
capabilities,	and	load	balancing	features.	Keep	in	mind	that	it	will	cost	you	more	to	create
VMs	with	more	features	and	capabilities.
Settings:	Choose	your	storage	account,	virtual	network,	subnet,	public	IP,	default
security	group,	diagnostics	storage	account	(if	diagnostics	enabled),	and	availability	set.
An	availability	set	allows	you	to	add	multiple	machines	to	the	same	set	to	avoid	all	the
machines	going	down	at	the	same	time,	enabled	by	placing	the	VMs	across	different
physical	servers/racks.

Allow	Azure	about	8	to	10	minutes	to	generate	your	new	VM.	Once	your	VM	has	been
created,	you	should	be	redirected	to	the	Dashboard,	where	you	should	see	a	tile	that	updates
you	on	the	status	of	your	VM.	Once	completed,	you	should	be	redirected	to	the	Settings	blade
of	the	VM	you	just	created.

In	the	main	blade	of	the	VM,	the	toolbar	of	icons	should	have	a	Connect	icon	that	allows	you
to	download	a	.rdp	file.	This	file	can	be	opened	in	remote	desktop	in	Windows	(or	an	other
operating	system)	to	interact	with	the	VM	directly,	as	if	you	were	in	front	of	it.

To	connect	to	the	VM	directly	through	the	remote	desktop,	use	the	following	format	for	your
credentials:

Login	name:	<machinename\username>
WOW! eBook

www.wowebook.org

Login	password:	<password>

The	following	screenshot	shows	the	creation	of	the	VM:

Once	you	access	the	machine,	you	will	have	to	set	up	IIS	manually	and	configure	the	VM	in
Azure	to	enable	the	desired	ports.	These	additional	settings	in	Azure	can	be	accessed	through
the	Network	Security	Group	that	your	VM	is	associated	with.	If	you	cannot	locate	it,	click	on
All	Resources	on	the	left	menu,	where	you	can	filter	the	list	of	all	your	resources,	and	select
the	network	security	group	that	shares	the	same	name	as	your	VM.	In	the	Settings	blade	for
this	group,	you	should	be	able	to	manage	the	group's	properties	and	inbound/outbound
security	rules.	By	default,	an	RDP	port	should	be	enabled	for	you.

WOW! eBook
www.wowebook.org

Deploying	to	Azure
In	order	to	deploy	to	Azure,	you	can	either	deploy	your	web	project	manually,	or	set	up
automated	deployment	through	continuous	integration.	Visual	Studio	2015	makes	it	really
easy	to	deploy	your	web	application	to	your	web	app	in	Azure.

To	deploy	to	Azure	from	Visual	Studio,	follow	these	steps:

1.	 Right-click	your	project	in	Solution	Explorer,	then	click	Publish.
2.	 Select	the	Microsoft	Azure	App	Service	option.
3.	 Log	in	to	Azure	if	you	haven't	done	so	already.
4.	 Select	a	Web	App	or	create	a	new	one.
5.	 If	applicable,	select	a	specific	Deployment	Slot.
6.	 Preview	the	connection	information	(if	applicable),	then	click	Next.
7.	 Update	the	settings	and	configuration	as	desired,	then	click	Next.
8.	 Preview	the	files	to	be	published,	then	click	Publish,	as	shown	in	the	following

screenshot:

WOW! eBook
www.wowebook.org

This	process	usually	takes	a	couple	of	minutes	for	a	small	application,	but	the	publishing	time
may	vary	depending	on	the	quantity	and	size	of	your	files.	Once	deployed,	your	web	browser
should	pop	up	with	the	website	loaded	from	the	URL	of	your	web	app	on	Azure.	The	first	time
the	website	loads,	it	should	take	a	few	seconds	for	the	app	to	start	up	on	the	web	server	for	the
first	time.	Subsequent	loads	should	be	almost	instantaneous.

If	your	website	doesn't	get	any	visitors	for	a	while,	it	is	considered	idle.	If	this	happens,	the
web	app	is	unloaded	by	Azure	until	the	next	visitor	requests	the	site.	The	first	visitor	to	reach
an	idle	site	will	trigger	the	site	to	load	up	again,	which	will	take	a	few	seconds.	Although	this
helps	you	conserve	resources,	you	may	want	to	leave	the	web	app	loaded	at	all	times.	In	the
Application	Settings	blade	for	your	web	app	in	Azure,	you	can	enable	a	feature	called
Always	On	to	ensure	that	it	is	always	loaded.

WOW! eBook
www.wowebook.org

Continuous	integration
Whether	you're	working	on	a	project	alone	or	with	a	team	of	developers,	you	will	most	likely
use	a	source	control	system	such	as	Git,	Subversion,	Mercurial,	or	TFS.	To	help	automate
the	deployment	process,	it	can	be	very	efficient	to	deploy	the	web	app	directly	from	source
control	through	a	continuous	integration	(CI)	system.

There	are	a	few	different	options	to	consider	when	implementing	CI:

Team	Foundation	Server	from	Microsoft
Visual	Studio	Team	Services,	a	hosted	option	from	Microsoft
TeamCity	from	JetBrains

To	get	started	with	TeamCity,	you	may	download	it	from	here:

https://www.jetbrains.com/teamcity

To	get	started	with	TFS,	you	may	download	it	from	here:

https://visualstudio.com/products/tfs-overview-vs.aspx

To	get	started	with	VSTS,	you	may	sign	up	here:

https://visualstudio.com/products/visual-studio-team-services-vs.aspx

WOW! eBook
www.wowebook.org

https://www.jetbrains.com/teamcity
https://visualstudio.com/products/tfs-overview-vs.aspx
https://visualstudio.com/products/visual-studio-team-services-vs.aspx

Preparing	for	CI
Not	everyone	on	your	team	may	be	ready	for	CI.	In	fact,	some	team	members	and	even
project	managers	may	be	opposed	to	it.	It	is	important	for	you	to	discuss	the	pros	and	cons	of
your	CI	decisions	and	ensure	that	you	have	a	successful	strategy	to	implement	it	for	your
project.

Consider	the	following	concerns:

We	don't	have	time	for	CI:	If	you	hear	this,	you	should	consider	the	time	you	will	lose
when	trying	to	deploy	an	application	to	a	staging	server	in	the	middle	of	the	night,	when
your	IT	administrator	is	on	vacation.	Automating	your	deployments	will	allow	you	to
save	more	time	in	the	long	term.
We	can't	afford	to	do	CI:	If	you	hear	this	complaint,	you	should	consider	the	cost	of	not
having	a	CI	system.	A	CI	system	will	allow	you	to	run	unit	tests	in	addition	to	performing
deployments.	You	could	spend	costly	hours	(or	even	days/weeks)	trying	to	troubleshoot
complex	problems	that	get	introduced	when	fixing	bugs	or	adding	new	features.	A	CI
system	will	help	pinpoint	these	problems	early	and	save	time	in	the	long-term.
We	won't	get	buy-in	from	our	clients	or	upper	management:	If	you	are	exposed	to	this	type
of	fear,	you	should	convince	your	team	to	talk	to	your	clients	about	the	benefits	of	CI.
Having	a	CI	system	in	place	could	mean	that	key	stakeholders	will	have	access	to	a	live
version	of	the	web	application	at	all	times,	even	during	development	iterations.	This	will
enable	an	agile	development	cycle,	which	will	encourage	early	feedback.

WOW! eBook
www.wowebook.org

Setting	up	Continuous	Deployment
Setting	up	Continuous	Deployment	(CD)	with	Azure	is	fairly	simple.	You	can	choose	from	a
list	of	options	in	the	Azure	portal.	Once	CD	has	been	set	up,	every	check-in	into	your	source
control	system	will	trigger	a	web	deployment	to	Azure.

To	get	started,	complete	the	following	steps:

1.	 Log	in	to	Azure	if	you	haven't	done	so	already.
2.	 Select	your	web	app	from	the	Dashboard.
3.	 Browse	to	the	settings	for	your	web	app.
4.	 In	the	Settings	blade,	look	for	Deployment	options	to	configure	your	deployment

source.
5.	 In	the	list	of	sources,	choose	a	source.

Here	is	an	example	of	what	you	may	expect	to	see	in	the	list	of	sources:

Visual	Studio	Online
OneDrive
Local	Git	Repository
GitHub
Bitbucket
Dropbox
External	Repository	(such	as	Git,	Mercurial,	and	others),	as	shown	in	the	following
screenshot:

WOW! eBook
www.wowebook.org

For	the	option	you	have	selected,	fill	in	the	required	information	to	connect	to	the
corresponding	service	to	establish	a	connection.	Once	the	connection	is	established,	your
credentials	will	be	used	for	future	deployments.	Azure	allows	you	to	set	up	deployment	slots
for	staging	and	production	environments	that	can	be	swapped	as	needed.	This	should	help	you
speed	up	the	time	taken	to	get	the	latest	stable	build	into	production.

If	you're	interested	in	learning	more	about	running	unit	tests	in	the	cloud	with	Visual	Studio
Team	Services,	please	refer	to	the	official	documentation:

https://www.visualstudio.com/docs/test/developer-testing/developer-testing

WOW! eBook
www.wowebook.org

https://www.visualstudio.com/docs/test/developer-testing/developer-testing

The	pitfalls	of	CI
Now	that	you	have	set	up	CD	and	CI,	what	could	go	wrong?	Years	of	experience	have	taught
many	developers	the	pitfalls	to	watch	out	for.	As	long	as	you	are	aware	of	what	to	expect,	you
will	be	well	prepared	to	handle	challenges	in	your	CI	journey.

Here	is	a	list	of	challenges	that	you	may	expect	to	encounter:

Learning	curve:	If	your	team	is	new	to	CI,	there	will	be	a	learning	curve	for	your	team
members.	There	is	no	way	around	this.	Do	what	it	takes	to	get	your	team	up	to	speed.
Rest	assured	that	the	benefits	will	soon	outweigh	the	initial	hurdles.
Upfront	cost:	As	you	get	over	the	learning	curve,	you	will	face	some	upfront	costs	in
terms	of	work	hours	and	possibly	server	expenses.	Once	again,	do	remind	yourself	that
the	extra	costs	up	front	will	save	you	money	in	the	long	run.
False	positives:	Once	everything	has	been	set	up,	some	of	your	unit	tests	may	result	in
some	false	positives.	This	may	be	caused	by	poorly-written	tests,	or	some	obscure
runtime	scenarios	that	may	not	have	to	be	addressed.
False	reassurance:	You	may	also	have	poorly-written	tests	that	result	in	false
reassurance.	A	bad	test	could	signal	that	everything	is	OK,	while	ignoring	an	error
condition	that	is	waiting	for	some	user	to	discover	it	at	a	future	date.
Long-running	deployments:	If	you	have	a	lot	of	code	and	a	lot	of	heavy	tests,	you	may
have	long-running	deployments.	The	trick	is	to	refactor	your	codebase	to	reduce
unnecessary	code	and	to	optimize	unit	tests	so	that	they	run	quickly	and	efficiently.

Once	you	get	through	the	initial	setup	and	have	optimized	your	code	and	tests,	you	should	be
well	on	the	way	to	a	smooth	deployment	process.	As	you	continue	to	make	changes	to	your
code	and	infrastructure,	you	may	occasionally	have	to	revisit	your	continuous	deployment
strategy	with	your	team.	This	will	help	your	team	bring	up	any	concerns	that	need	to	be
addressed.

WOW! eBook
www.wowebook.org

Summary
In	this	chapter,	we	covered	various	deployment	options	and	focused	on	deploying	an
ASP.NET	web	application	to	Azure.	We	wrapped	up	with	a	quick	introduction	to	CI	and	CD.

Going	forward,	you	should	stay	tuned	to	announcements	from	Microsoft	to	learn	more	about
ASP.NET	Core	and	Azure.	There	are	several	websites,	blogs,	and	videos	online	that	may	be
useful	to	you.

Here	is	a	list	of	online	resources	that	you	may	find	useful:

Official	ASP.NET	website	(http://asp.net)
Downloads	(https://www.microsoft.com/net)
Documentation	(https://docs.asp.net)
ASP.NET	Community	Standup	(https://live.asp.net)
Microsoft	Virtual	Academy	(https://mva.microsoft.com)
MSDN	Channel	9	(https://channel9.msdn.com)

WOW! eBook
www.wowebook.org

http://asp.net
https://www.microsoft.com/net
https://docs.asp.net
https://live.asp.net
https://mva.microsoft.com
https://channel9.msdn.com

	ASP.NET Core Essentials
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	eBooks, discount offers, and more
	Why subscribe?
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Getting Started with ASP.NET Core
	ASP.NET Core - Unifying MVC, Web API, and Web Pages
	High-level overview
	Version numbers
	Putting it all together
	Differences between .NET Framework and .NET Core
	Full .NET Framework 4.6
	Lightweight .NET Core
	Running ASP.NET Core on .NET Framework versus .NET Core
	What's new with Visual Studio 2015 and Visual Studio Code?
	Community Edition
	Professional and Enterprise Editions
	Visual Studio Code
	Running ASP.NET Core on Windows, Mac OS X, and Linux
	ASP.NET Core on Windows
	ASP.NET Core on Mac OS X
	ASP.NET Core on Linux
	Summary
	2. Building Your First ASP.NET Core Application
	Project templates in Visual Studio 2015
	Empty template
	Web API template
	Web Application template
	Hello, ASP.NET - your first ASP.NET application
	Writing a response
	Launching the application
	Web files and folders
	Models, views, and controllers - an MVC refresher
	Controllers
	Models
	Views
	Web configuration with project.json
	Dependencies and frameworks
	Commands and tools
	Bundling and publishing
	Summary
	3. Understanding MVC
	Building controllers
	Controller methods
	Basic controllers
	URL routes and conventions
	Implementing views
	Basic views
	Tag helpers in views
	ViewData, ViewBag, and TempData
	Designing models and ViewModels
	Creating models
	Binding models to views
	ViewModels and mapping
	Bringing it all together
	Scaffolding, validation, and model binding
	Database setup and data entry
	Exception handling
	Summary
	4. Using Web APIs to Extend Your Application
	Understanding a Web API
	The case for Web APIs
	Creating a new Web API project from scratch
	Building your Web API project
	Configuring the Web API in your web application
	Setting up dependencies
	Parts of a Web API project
	Running the Web API project
	Adding routes to handle anticipated URL paths
	Understanding routes
	Setting up routes
	Testing routes
	Consuming a Web API from a client application
	Testing with external tools
	Consuming a Web API from a mobile app
	Consuming a Web API from a web client
	Summary
	5. Interacting with Web API using JavaScript
	Using JavaScript to interact with Web API
	Preparing the server-side code
	Client-side JavaScript
	JavaScript frameworks
	Single-page applications with AngularJS
	Getting started with AngularJS
	AngularJS syntax and features
	Building a web application with AngularJS
	Model-View-ViewModel (MVVM) with KnockoutJS
	Getting started with KnockoutJS
	KnockoutJS syntax and features
	Building a web application with KnockoutJS
	Task runners, bundling, and minification using Bower, Grunt, and Gulp
	Why do we need task automation?
	Using Bower as your package manager
	Using Gulp and Grunt as task runners
	Summary
	6. Using Entity Framework to Interact with Your Database in Code
	Object-relational mapping in .NET
	Why use an ORM?
	Why Entity Framework?
	The evolution of Entity Framework
	EF 6.x for .NET Framework versus EF Core 1.0
	What's different in EF Core
	Getting started with EF Core
	What else is new?
	Code First approach to database design and relationships
	Updating the models
	Updating the controllers
	Updating the views
	EF Code First migrations for database versioning and maintenance
	Setting up migrations
	Adding and removing migrations
	Running your application
	Summary
	7. Dependency Injection and Unit Testing for Robust Web Apps
	Understanding IoC
	Pros and cons of DI
	SOLID principles and Gang of Four patterns
	Loose coupling
	Implementing DI in ASP.NET Core
	Lifecycle management
	Constructor injection versus action injection
	Verifying the expected behavior
	DI options in ASP.NET Core
	Built-in IoC
	Autofac
	Other alternatives
	Writing unit tests
	Setting up a test project
	Running unit tests
	Going beyond the basics
	Summary
	8. Authentication, Authorization, and Security
	Enabling authentication in ASP.NET
	High-level overview
	Authentication configuration
	External service providers
	Using authorization for application features
	High-level overview
	Basic authorization
	Roles and claims
	Protecting your data
	Data protection in ASP.NET Core
	Implementing data protection
	How it all works
	Implementing web application security
	Cross-site scripting
	Anti-forgery
	Cross-origin requests
	Summary
	9. Deploying Your Application
	Deployment options
	Environment configuration
	Deploying your web app
	Deploying your database
	Deploying to IIS
	Setting up IIS
	Using the filesystem
	Importing a publish profile
	Deploying to Azure, Microsoft's cloud platform
	Creating a web app
	Creating a virtual machine
	Deploying to Azure
	Continuous integration
	Preparing for CI
	Setting up Continuous Deployment
	The pitfalls of CI
	Summary

